• Title/Summary/Keyword: Aqueous Sample

Search Result 304, Processing Time 0.027 seconds

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.

Speciation of Chromium in Water Samples with Homogeneous Liquid-Liquid Extraction and Determination by Flame Atomic Absorption Spectrometry

  • Abkenar, Shiva Dehghan;Hosseini, Morteza;Dahaghin, Zohreh;Salavati-Niasari, Masoud;Jamali, Mohammad Reza
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2813-2818
    • /
    • 2010
  • A novel method was developed for the speciation of chromium in natural water samples based on homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry (FAAS). In this method, Cr(III) reacts with a new Schiff's base ligand to form the hydrophobic complex, which is subsequently entrapped in the sediment phase, whereas Cr(VI) remained in aqueous phase. The Cr(VI) assay is based on its reduction to Cr(III) by the addition of sodium sulfite to the sample solution. Thus, separation of Cr(III) and Cr(VI) could be realized. Homogeneous liquid-liquid extraction based on the pH-independent phase-separation process was investigated using a ternary solvent system (water-tetrabutylammonium ion ($TBA^+$)-chloroform) for the preconcentration of chromium. The phase separation phenomenon occurred by an ion-pair formation of TBA and perchlorate ion. Then sedimented phase was separated using a $100\;{\mu}L$ micro-syringe and diluted to 1.0 mL with ethanol. The sample was introduced into the flame by conventional aspiration. After the optimization of complexation and extraction conditions such as pH = 9.5, [ligand] = $1.0{\times}10^{-4}\;M$, [$TBA^+$] = $2.0{\times}10^{-2}\;M$, [$CHCl_3$] = $100.0\;{\mu}L$ and [$ClO_4$] = $2.0{\times}10{-2}\;M$, a preconcentration factor (Va/Vs) of 100 was obtained for only 10 mL of the sample. The relative standard deviation was 2.8% (n = 10). The limit of detection was sufficiently low and lie at ppb level. The proposed method was applied for the extraction and determination of chromium in natural water samples with satisfactory results.

Determination of Zinc and Lead in Water Samples by Solvent Sublation Using Ion Pairing of Metal-Naphthoate Complexes and Tetra-n-butylammonium Ion

  • Kim, Yeong Sang;Choe, Yun Seok;Lee, Won;Lee, Yong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.821-826
    • /
    • 2001
  • Solvent sublation has been studied for the separation and determination of trace Zn(Ⅱ) and Pb(Ⅱ) in water samples. A synergy producing method was utilized to improve the efficiency of extraction in the sublation using an ion-pair of metal-naphth oate {M-(Nph)3- } complexes and tetra-n-butylammonium (TBA+ ) ion. After the M-(Nph)3- complexes were formed by adding 1-naphthoic acid to the sample solution, tetra-n-butylammonium bromide was added in the solution to form the ion-pair. And sodium lauryl sulfate (SLS) was added to make the ion-pair hydrophobic. The ion-pairs of the metal complexes were floated and extracted into methylisobutyl ketone (MIBK) from the aqueous solution by bubbling with nitrogen gas in a flotation cell. Metal ions in MIBK solution were measured by graphite furnace-AAS. Experimental conditions were optimized as follow so. After the pH of a 1.0 L water sample was adjusted to 5.0, 6.0 mL of 0.1 M 1-HNph and 10 mL of 0.03 M TBA-bromide were added to the sample to form ion-pairs, and 2.0 mL of 0.2%(w/v) SLS was added to make the ion-pairs hydrophobic. The solution was bubbled with 30 mL/min N2 gas for 5 minutes in a flotation cell. Linear calibration curves were obtained for the determination of Zn(Ⅱ) and Pb(Ⅱ) in several water samples. Reproducible results of showing a relative standard deviation of < 10% and recoveries of 80-100% could be obtained.

Column cleaning, regeneration and storage of silica-based columns (실리카 기반 컬럼의 세척, 재생 및 보관 가이드)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

Formation Fe2O3 Nanowalls through Solvent-Assisted Hydrothermal Process and Their Application for Titan Yellow GR Dye Degradation

  • Ahmed, Khalid Abdelazez Mohamed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.205-209
    • /
    • 2014
  • Hematite iron oxide (${\alpha}$-$Fe_2O_3$) nanowalls were fabricated on aluminum substrate by a facile solvent-assisted hydrothermal oxidation process. The XRD and EDS patterns indicate that the sample has a rhombohedral phase of hematite $Fe_2O_3$. FE-SEM, TEM, HR-TEM, SA-ED were employed to characterize the resulting materials. $N_2$ adsorption-desorption isotherms was used to study a BET surface area. Their capability of catalytic degradation of titan yellow GR azo dye with air oxygen in aqueous solution over $Fe_2O_3$ catalysts was studied. The result indicates that the as-prepared product has a high catalytic activity, because it has a larger surface area. Langmuir and Freundlich isotherms of adsorption dye on the catalysts surface were investigated and the decomposition of titan yellow GR follows pseudo-first order kinetic.

Photocatalytic-Photochemical Reaction of Wastewater Dyes in aqueous Solution (염료폐수 용액의 광축매-광화학 반응)

  • 김삼혁;최칠남;정오진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.241-248
    • /
    • 1999
  • The photocatalytic decolorization and photodegradation of wastewater contamininated with dyes such as methyleneblue tetrahydrate(MBT), methyl orange(MO), phenol red(PR) and the mixed dyes have been studied using a batch reactor in the presence of aerotropic and titania. Degussa P25 titanium oxide was used as the photocatalyst and proved to be effective for the dyes-degradation when irradiated with UV-light source emitting the wavelength of 253.7 nm in the presence of air. In addition to removing the color from the wastewater, the photocatalytic reaction simultaneously reduced the COD and optical density which suggests that the dissolved organic compounds have been photooxidized. The reaction rate of disappearance of the dyes were measured as a function of the irradiation times. The photooxidative procedure of the aquatic solution have the first order reaction-kinetics. The rate constants were increased in the order of PR < MBT < $gL^{-1}-TiO_2$ powder were irradiated with the UV -light source.

  • PDF

A Study on the Removal of Phosphorus in the Lake (호수내의 인 제거에 관한 연구)

  • Kim, Kyoungtae;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1998
  • The feasibility of usage of sludge from water treatment plant and chalk from schools and institutes was investigated to remove the phosphorus in the lakes which induce the eutrophication every year. In this study phosphorus removal efficiencies of sludge and chalk were investigated by changing various factors. Higher phosphorus removal efficiency using larger particle size of chalk was observed which means that the surface area is not an important factor in removing phosphorus in aqueous phase. The proper shaking time and temperature were 2 hours and $25^{\circ}C$, respectively. The removal efficiency using sludge from water treatment plant was almost 100%, which is similar to those of CaO and $Ca(OH)_2$. It means that sludge can be reused in removing phosphorus. It was also found that chalk was better in removing phosphorus under alkaline condition and sludge was better under acidic condition. About 75% phosphorus removal efficiency was observed using sludge from the water sample in Lake Sihwa.

  • PDF

A Study on the Photosensitivity of Poly(vinyl cinnamoyl acetate) Developable in Aqueous Base (수계현상성 Poly(vinyl cinnamoyl acetate)의 감광특성에 관한 연구)

  • 신동률
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.1.2-15
    • /
    • 1994
  • This is the study which appear the relation between the situation of Anchor point and the qualities of lithographic prints using the uncoated paper. Anchor point were measured by microscopic photography and Kubelka-munk`s method. The situation of Anchor point increased with print density and print though, but it decreased with evenness and rub off. In case of commercial uncoated paper, the situation of Anchor point was optimized when it was 25~35% apporoximately. In preparation of samples for microscopic photography, the samples were used by the resin testing methods. This method used that the resin fixes the printed papers of sample very hard, in preparation of samples for microscopica potography a good result could be gained by this method.

  • PDF

Trace Analysis of Uranium in Aqueous Samples by Laser-induced Fluorescence Spectroscopy (레이저를 이용한 용액중의 미량 우라늄 분석)

  • Jung, Kwang-Woo;Kim, Jeong-Moog;Kim, Cheol-Jung;Lee, Jong-Min
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.242-248
    • /
    • 1987
  • A sensitive, direct method for the determination of trace amounts of uranium in solution has been developed utilizing laser-induced fluorescence spectroscopy and a fluorescence enhancing reagent 'Fluran.' Standard addition technique is incorporated into the analysis to eliminate sample matrix effects. Analytical data show that a detection limit of 0.1 ppb (part per billion) uranium has been achieved and the precision of the analysis is in the range of 5% relative standard deviation. Results using the laser fluorescence method on many sets of unknown samples have been compared against corresponding values determined by other methods.

  • PDF

Immunoassay for Monitoring Pesticide Contamination in Agricultural Products

  • Park, Eun-Kee;Lee, Hu-Jang
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.433-438
    • /
    • 2008
  • Much of the increase in agricultural productivity over the past half century has been due to the control of the pests with synthetic pesticides. The use of these pesticides has caused environmental problems and public health concern. The guidelines of maximum residue levels of pesticides in agricultural products has been well documented but more careful monitoring of their residues is required. Pyrethorid class pesticides are dominant in modern agricultural industry but public health concerns have been recently considered. The major route of pesticide exposure is the diet and with improved surveillance of pyrethorid residues in agricultural products their exposure should be controlled and minimized. In suitable products with reduced matrix effects such as agricultural products, aqueous samples, fruits and vegetables the use of immunoassays for pyrethorid residue monitoring could satisfy this requirement. Immunoassays have several advantages, namely they are highly sensitive, selective and cost-effective and enable large-scale sample handling and analysis in the laboratory.