• Title/Summary/Keyword: Aquatic toxicology

Search Result 96, Processing Time 0.019 seconds

Ecological Risk Assessment based on Watershed System Assimilative Capacity in take Texoma, Texas-Oklahoma, USA (유역시스템 정화력을 고려한 생태위해성평가 사례연구: Lake Texoma Watershed (TX&OK, USA)를 대상으로)

  • An, Youn-Joo;Donald H. Kampbell;Guy W. Sewell
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.27-27
    • /
    • 2003
  • Lake Texoma is located on the border of southern Oklahoma and northern Texas. It has 93,000 surface acres, and is a focus of the recreation, and farming industries in the region. There are potential stressors around the Lake Texoma watershed that may cause adverse ecological effects in the lake. System assimilative capacity (SAC) is the ability of abiotic and biotic processes to atteuniate the stressors. SAC Exceeded indicates potential of occuring adverse eco-effects. A number of representative chemical release sites and stressor sources in the surrounding watershed were characterized, and several impact sites having stressors sources, such as being near agriculture, landfills, housing areas, oil production fields and heavy use recreational activity, were selected for surface water, sediment, and groundwater monitoring. A paired reference site, having similar physical characteristics as its impact site, was also chosen based on its proximity to the impact site. Lake water samples were collected at locations identified as marina entrance, gasoline filling station, and boat dock at five marinas selected on Lake Texoma from September 1999 to December 2001. Paired water and sediment samples were also collected. Groundwater samples were collected at about 70 producing monitoring wells. Water quality parameters measured were inorganics (nitrate, nitrite, orthophosphate, ammonia, sulfate, and chloride), dissolved methane, total organic carbon (TOC) (or DOC), volatile organic compounds (VOCs) such as methyl tert-butyl ether (MTBE) and BTEX, and a suite of metals. Biotic communities were evaluated at impact and reference sites. Five basic components were measured; two terrestirial components (plants and bird comminitires) and three aquatic components (benthic inverbrates, litteral-zone fishes, ecosystem attribures). Potential impacts to these comminites were evaluated.

  • PDF

ROLE OF COMPUTER SIMULATION MODELING IN PESTICIDE ENVIRONMENTAL RISK ASSESSMENT

  • Wauchope, R.Don;Linders, Jan B.H.J.
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.91-93
    • /
    • 2003
  • It has been estimated that the equivalent of approximately $US 50 billion has been spent on research on the behavior and fate of pesticides in the environment since Rachel Carson published “Silent Spring” in 1962. Much of the resulting knowledge has been summarized explicitly in computer algorithms in a variety of empirical, deterministic, and probabilistic simulation models. These models describe and predict the transport, degradation and resultant concentrations of pesticides in various compartments of the environment during and after application. In many cases the known errors of model predictions are large. For this reason they are typically designed to be “conservative”, i.e., err on the side of over-prediction of concentrations in order to err on the side of safety. These predictions are then compared with toxicity data, from tests of the pesticide on a series of standard representative biota, including terrestrial and aquatic indicator species and higher animals (e.g., wildlife and humans). The models' predictions are good enough in some cases to provide screening of those compounds which are very unlikely to do harm, and to indicate those compounds which must be investigated further. If further investigation is indicated a more detailed (and therefore more complicated) model may be employed to give a better estimate, or field experiments may be required. A model may be used to explore “what if” questions leading to possible alternative pesticide usage patterns which give lower potential environmental concentrations and allowable exposures. We are currently at a maturing stage in this research where the knowledge base of pesticide behavior in the environmental is growing more slowly than in the past. However, innovative uses are being made of the explosion in available computer technology to use models to take ever more advantage of the knowledge we have. In this presentation, current developments in the state of the art as practiced in North America and Europe will be presented. Specifically, we will look at the efforts of the ‘Focus’ consortium in the European Union, and the ‘EMWG’ consortium in North America. These groups have been innovative in developing a process and mechanisms for discussion amongst academic, agriculture, industry and regulatory scientists, for consensus adoption of research advances into risk management methodology.

  • PDF

Initial Risk Assessment of Acetanilide in OECD High Production Volume Chemical Program

  • Park, Hye-Youn;Park, Yoonho;Sanghwan Song;Kwon, Min-Jeoung;Koo, Hyun-Ju;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.13-22
    • /
    • 2002
  • In Korea, 2,320 tonnes of acetanilide were mostly wed as intermediates for synthesis in phar-maceuticals or additives in synthesizing hydrogen peroxide, varnishes, polymers and rubber. Only small amount of 120 kg were wed as a stabilizer for hydrogen peroxide solution for hair colouring agents in 1998. Readily available environmental or human exposure data do not exist in Korea at the present time. However, potential human exposures from drinking water, food, ambient water and in work places are expected to be negligible because this chemical is produced in the closed system in only one company in Korea and the processing factory is equipped with local ventilation and air filtering system. Acetanilide could be distributed mainly to water based on EQC model. This substance is readily biodegradable and its bioaccumulation is low. Acute toxicity of acetanilide is low since the L $D_{50}$ of oral exposure in rats is 1,959 mg/kg bw. The chemical is not irritating to skin, but slightly irritating to the eyes of rabbits. horn repeated dose toxicity, the adverse effects in rats were red pulp hyperplasia of spleen, bone marrow hyperplasia of femur and decreased hemoglobin, hematocrit and mean corpuscular hemoglobin concentration. The LOAEL for repeated dose toxicity in rats was 22 mg/kg/day for both sexes. Acetanilide is not considered to be genotoxic. In a reproductive/developmental toxicity study, no treatment-related changes in precoital time and rate of copulation, impregnation, pregnancy were shown in all treated groups. The NOAELs for reproduction and developmental toxicity (off-spring toxicity) are considered to be 200 mg/kg bw/day and 67 mg/kg bw/day, respectively. Ecotoxicity data has been generated in a limited number of aquatic species of algae (72 hr- $E_{b}$ $C_{50}$; 13.5 mg/l), daphnid (48hr-E $C_{50}$ > 100 mg/l) and fish (Oryzias latipes, 96hr-L $C_{50}$; 100 mg/l). Form the acute toxicity values, the predicted no effect concentration (PNEC) of 0.135 mg/1 was derived win an assessment factor of 100. On the basis of these data, acetanilide was suggested as currently of low priority for further post-SIDS work in OECD.in OECD.D.

Physical and Chemical Management Practices for Improving Water Quality in Channel Catfish Ictalurus punctatus Aquaculture

  • Seo, Jin-Won
    • Journal of Aquaculture
    • /
    • v.15 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Research on practices for improving water quality in channel catfish Ictalurus punctatus ponds was conducted at the Auburn University Fisheries Research Station, Auburn, Alabama, in 1998 and 1999. The objective of this two-year study was to determine better management practices to enhance water quality and improve production efficiency. In the first year, oxidation of bottom soil by drying, tilling, and applying sodium nitrate was performed (dry-till and dry-till with sodium nitrate treatments). The second year, based on the results obtained during the first year, precipitation of phosphorus (P) from water by applying gypsum was compared to the dry-till treatment (dry-till and dry-till with gypsum treatments). Control ponds were not subjected to bottom drying, tilling, sodium nitrate, or gypsum treatment. Channel catfish fingerings were stocked at 15,000/ha. In the first year, water in ponds from dry-till and dry-till with sodium nitrate treatments had lower concentrations (P < 0.01) of soluble reactive P, nitrate ($NO_{3} ^{-}) and nitrite ($NO_{2} ^{-}) nitrogen (N), total ammonia ($NH_3$) nitrogen, total suspended solids and turbidity, and higher values of pH, Secchi disk visibility, total alkalinity, total hardness, and calcium ($Ca^{2+}) hardness than water in control ponds. Ponds of the dry-till treatment also had lower concentrations (P < 0.01) of total P and total N than control ponds. Total fish production and survival rate did not differ among the treatments (P > 0.05). The findings suggested that drying and tiling pond bosoms between crops could achieve water quality improvement. Applying sodium nitrate to dry, tilled pond bosoms did not provide water quality improvement. In the second year, the treatment with the best results from the first year, dry-till, was compared with a dry-till with gypsum treatment. Enough gypsum was applied to give a total hardness of about 200 mg/L, and gypsum was reapplied as needed to maintain the hardness. Compared to the control, dry-till and dry-till with gypsum treatments had lower concentrations (P < 0.01) of total and soluble reactive P, total N, and total $NH_3$-N, and higher concentrations (P < 0.01) of dissolved oxygen. Ponds of the duty-till with gypsum treatment also had lower concentrations (P < 0.01) of chlorophyll $\alpha$, chemical oxygen demand, and total alkalinity than the control. Total fish production and survival rate did not differ (P > 0.05) among the treatments. These findings suggest that drying and tilling pond bosoms between crops and treating low hardness waters with gypsum could achieve water Quality improvement.

Comparisons of Fish Communities in Ledbetter Creek and Ledbetter Embayment of Kentucky Lake, Kentucky, USA

  • Seo, Jinwon;Timmons, Tom J.
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.137-140
    • /
    • 2002
  • To determine if fish density, biomass, species richness, and species diversity were greater in ecotone than the stream and littoral zones, I sampled fish monthly in the Ledbetter Creek through Ledbetter Creek Embayment in Kentucky Lake, Kentucky, from April to October 1996 by using throw traps. During the first four months (daytime only) fish density did not vary significantly among zones or among months. However, there were significant differences among zones during the last three months and the stream zone had significantly higher mean fish density than both the littoral zone and the ecotone. Fish biomass also differed significantly among zones during the last three months. The stream zone had the highest mean fish biomass among zones, significantly higher than the ecotone, but not different than the littoral zone. There were no statistically significant differences among zones during the first four months, but mean fish biomass in the stream zone was about eight times higher than the ecotone, The stream zone had the highest fish species richness among zones. Differences were significant among zones during the last three months, and the stream zone (0.98 $\pm$ 0.04) had significantly greater mean fish species richness than the ecotone (0.45 $\pm$ 0.01), but not significantly than the littoral zone (0.56 $\pm$ 0.17). Fish species richness differed significantly among months during the first four months, Monthly species diversities ranged from 0.62 to 1.96 in the stream zone, 0 to a.57 in the ecotone, and 0 to 2.60 in the littoral zone. Combined species diversities in the stream, the ecotone , and the littoral zones were 2.72, 3.58, and 3.10, respectively, There were five families of fishes captured frequently enough for their individual numbers to comprise at least 8 % of the total. Family rankings in the stream zone were opposite of the littoral zone. Percidae was the most abundant family and Clupeidae was absent in the stream zone, whereas Percidae was uncommon and Clupeidae was the most abundant family in the littoral zone. Atherinidae was dominant in the ecotone. Five of the most abundant species comprised 65 % of the total number. The guardian darter occurred only in the stream zone, and it was consistently found in riffles. Longear sunfish and central stoneroller also had significant differences of mean fish densities among zones, and they were found mostly in the stream zone. Threadfin shad and bullhead minnow were almost exclusively caught in the littoral zone. I finally concluded that the ecotone between the stream and the littoral zone in this small-scale freshwater aquatic ecosystem was not as productive as the ones in other ecosystems.

  • PDF

Establishment of Marine Ecotoxicological Standard Method for Larval Fish Survival Test (어류 자어의 사망률을 이용한 해양생태독성시험 방법에 관한 연구)

  • Park, Gyung-Soo;Kang, Ju-Chan;Yoon, Sung-Jin;Lee, Seung-Min;Hwang, Un-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.140-146
    • /
    • 2008
  • Marine ecotoxicological standard method using fish larvae was established with the standard test species of Oryzias latipes(Japanese Medaka) and Paralichthys olivaceus(flounder) and with the 7 day $LC_{50}$ as endpoint. Test method referred to the USEPA(1994) with the replacement of test species found in the Korean water. Standard test species were selected in terms of the species supply and ecological importance in Korean waters. Japanese medaka can be reared with small tanks in the lab and has wide tolerance on salinity, and flounder eggs can be easily obtained from commercial fish hatcheries. General conditions for larval fish toxicity test are as follows. The possible salinity ranges for toxicity test were $0{\sim}35\;psu$ for medaka and >20 psu for flounder. Test type was designated as static non-renewal test if the dissolved oxygen in the test chamber does not fall below 4.0 mg/L. Ages of test species were selected as 7 days after hatched for medaka(about 5 mm TL) and 25 days for flounder(about 10 mm TL) because of the low natural mortality after these periods. Test can be accepted when the survival rates are over 80% in control. Also, species sensitivity on standard reference materials(copper, cadmium or zinc) must be provided with the toxicity test results.