• Title/Summary/Keyword: Aquatic plant biomass

Search Result 31, Processing Time 0.027 seconds

Effects of Cooling Water System of a Power Plant on Marine Organisms II. Effects on Benthic Organisms (화력발전소 냉각계통이 해양생물에 미치는 영향 II. 저서생물에 미치는 영향)

  • YI Soon Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.391-407
    • /
    • 1987
  • To understand the effects of the cooling water system of the power plant on the succession of sessile zoobenthos, a series of experiments were carried out at the cooling water system of Samchonpo Power Plant from Hay 1985 to May 1986. The lowest species diversity of the zoobenthos was observed at the discharge canal. This is probably caused by both increased velocity and temperature of circulating water. It is also noticeable that species composition of the zoobenthos, to a certain degree, was affected due to the impingement of meroplankton during the entrainment process. While the number of species attached on the experimental substrata installed in the thermally altered area is smaller than that in the intake canal, the biomass is increased as the increased temperature eliminates some species and in turn stimulates reproduction and growth of the others. It is interesting that relatively high similarity exists between the summer communities in the intake canal and the spring communities in the thermally altered area, and the same relationship is also found between the fall communities in the intake canal and the winter communities in the thermally altered area. Ecological index curves of the zoobenthos of the intake canal follows the fluctuation pattern of the thermally altered area in one or two months of elapsed time, probably due to temperature increase by the inflow of heated water discharged from the power plant.

  • PDF

Phytoremediation of Organophosphorus and Organochlorine Pesticides by Acorus gramineus

  • Chuluun, Buyan;Iamchaturapatr, Janjit;Rhee, Jae-Seong
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.226-236
    • /
    • 2009
  • The performance of phytoremediation has proven effective in the removal of nutrients and metals from aqueous systems. However, little information is available regarding the behavior of pesticides and their removal pathways in aquatic environments involving plant-uptake. A detailed understanding of the kinetics of pesticide removal by plants and information on compound/plant partition coefficients can lead to an effective design of the phytoremediation process for anthropogenic pesticide reduction. It was determined that the reduction rates of four organophosphorus (OP) and two organochlorine (OC) pesticides (diazinon, fenitrothion, malathion, parathion, dieldrin, hexachlorobenzene [HCB]) could be simulated by first-order reaction kinetics. The magnitude of k was dependent on the pesticide species and found within the range of 0.409 - 0.580 $d^{-1}$. Analytical results obtained by mass balances suggested that differential chemical stability, including diversity of molecular structure, half-lives, and water solubility, would greatly influence the removal mechanisms and pathways of OPs and OCs in a phytoreactor (PR). In the case of OP pesticides, plant accumulation was an important pathway for the removal of fenitrothion and parathion from water, while pesticide sorption in suspended matter (SM) was an important pathway for removal of dieldrin and HCB. The magnitude of the pesticide migration factor (${\Large M}_p^{pesticide}$) is a good indication of determining the tendency of pesticide movement from below- to above-ground biomass. The uncertainties related to the different phenomena involved in the laboratory phyto-experiment are also discussed.

Effect of Growth Conditions on the Biomass and Lipid Production of Euglena gracilis Cells Raised in Mixotrophic Culture (Mixotrophic 배양조건에 따른 Euglena gracilis의 성장과 지질에 미치는 영향)

  • Jeong, U-Cheol;Choi, Jong-Kuk;Kang, Chang-Min;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2016
  • Microalgae are functional foods because they contain special anti-aging inhibitors and other functional components, such as ecosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and omega-3 polyunsaturated fatty acids. Many of these functional dietary components are absent in animals and terrestrial plants. Thus, microalgae are widely utilized in human functional foods and in the feed provided to farmed fish and terrestrial livestock. Many marine organisms consume microalgae, often because they are in an appropriate portion of the cell size spectrum, but also because of their nutritional content. The nutritional requirements of marine organisms differ from those of terrestrial animals. After hatching, marine animals need small live forage species that have high omega-3 polyunsaturated fatty acid contents, including EPA and DHA. Euglena cells have both plant and animal characteristics; they are motile, elliptical in shape, 15-500 μm in diameter, and have a valuable nutritional content. Mixotrophic cell cultivation provided the best growth rates and nutritional content. Diverse carbon (fructose, lactose, glucose, maltose and sucrose) and nitrogen (tryptone, peptone, yeast extract, urea and sodium glutamate) supported the growth of microalgae with high lipid contents. We found that the best carbon and nitrogen sources for the production of high quality Euglena cells were glucose (10 g L–1) and sodium glutamate (1.0 g L–1), respectively.

Effects of Culture Methods on the Growth Rates and Fatty Acid Profiles of Euglena gracilis (배양방법에 따른 Euglena gracilis의 성장 및 지방산 조성)

  • Jeong, U-Cheol;Choi, Jong-Kuk;Kang, Chang-Min;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.38-44
    • /
    • 2016
  • The quality and quantity of live food sources strongly influence the success of fish production in farming operations. Thus, critical studies of live forage species are a crucial element for progress in fish aquaculture. The fat content of food is an especially important determinant of growth in marine fish. Omega-3 highly unsaturated fatty acids (HUFA) are essential components of diet that determine the nutritional value of larval fish. Euglena is a protist that has potential as a forage species. These single-celled organisms have plant and animal characteristics they are motile, elliptical in shape and 15–500 μm in diameter. Their nutritional content is excellent, but most studies have focused on cells raised in autotrophic culture. We therefore examined differences in the lipid and fatty acid contents, and the growth of Euglena cells grown under autotrophic, heterotrophic, and mixotrophic conditions. Biomass production reached 15.03 g/L, 12.28 g/L, and 3.66 g/L under mixotrophy, heterotrophy, and autotrophy, respectively. The proportional n-3 HUFA content differed among culture methods: 10.04%, 5.80% and 10.01% in mixotrophic, heterotrophic and autotrophic cultures, respectively. Mixotrophy was to be the best form of cultivation for improving the growth and nutritional content of Euglena.

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.

Phenology and Population Dynamics of Scirpus fluviatilis (Torr.) A. Gray in the Littoral Zone of the Upo Wetland (우포늪 연안대에서 매자기의 화력학과 개체군 변화)

  • Seo, Hye-Ran;Park, Sang-Yong;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.49-59
    • /
    • 2009
  • Seasonal changes of the growth characteristics and biomass of Scirpus fluviatilis, a aquatic emergent vascular plant, were investigated to reveal the phenology and the population dynamics and to provide the fundamental resources for the restoration counterplan of the wetland vegetation in the littoral zone of the Upo wetland, Changnyeong-gun, Gyeongsangnam-do, Korea from March 2006 to November 2006. Scirpus fluviatilis was distributed commonly in Upo, Mokpo, Sajipo, Jokjibyeol, and Topyeongcheon upstream and downstream of Upo wetland, and the density was highest in Mokpo. Distribution range for the water depth was 9~49cm, and the highest shoot density in 26~49cm, and the mean shoot density was $119/m^2$, and the mean shoot length was 122.3cm on May 28. The number of the tuber was $104.5/0.25m^2$, and the living tubers were 84.2%. The mean fresh biomass of the living tubers was 3.0g, and those of 1~4g was most as 57.9%. Germination rates of the living tubers was 43.8%, and the maximum rate was in 7~9g and more than 10g. In the pot cultivation, the shoot density of the germinated tubers and the dormant tubers were highest as 13.5 and 9.7, respectively in early August. In the field study, the shoot density had few change before typhoon damage, while the density increased abruptly in November after flooding accompanied with the typhoon 'Ewiniar'. The shoot length in the pot cultivation and in the field study were 100~116cm and 60~170cm, respectively in the growth-end. Biomass allocation rates into the stem, leaf, flower, and underground parts were 8.9%, 6.6%, 0%, and 84.5%, respectively in the pot cultivation of the germinated tubers, and those of the dormant tubers were 7.1%, 7.1%, 0%, and 85.8%, respectively. The tuber number increased to 1.4~4.1 times by the growth-end, so it is concluded that Scirpus fluviatilis is mostly propagated by the vegetative reproduction.

  • PDF

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

Role of Aquatic Macrophytes as Refuge of Zooplankton on Physical Distribution (Summer Rainfall) in Shallow Wetlands (물리적인 교란 (여름 강우)에 대한 동물플랑크톤 서식처로서 수생식물의 중요성)

  • Choi, Jong-Yun;Kim, Seong-Ki;Kim, Dong-Hwan;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.308-319
    • /
    • 2016
  • In order to evaluate the role of macrophytes as refuge of zooplankton on physical distribution (i.e. summer rainfall), we investigated the environmental factors, macrophytes, and zooplankton in waterside zones (macrophytes zones) and open water zones of 17 wetlands from May and August, 2011. In this study, a total of 51 zooplankton species were identified, and Polyarthra sp. and Diaphanosoma brachyurum were found to be the most dominant species. Waterside area of each wetland were occupied by a total of 10 macrophyte species, species composition and biomass (dry weight) were different in the survey sites. Zooplankton was more abundant in waterside zone than open water zones lacking macrophytes (One-way ANOVA, df=2, F=27.1, P<0.05), in particular, waterside zone of 1, 8, 9, 10, and 11 wetland were supported by high zooplankton density after summer rainfall. This wetlands were developed by various macrophyte species than other wetland, and submerged plant commonly presented. Waterside zones with various macrophyte species provides complexity to the habitat structure, should be utilized as refuge to avoid disturbance such as summer rainfall. The results indicate that macrophytes are the key components to enhance bio-diversity include zooplankton, and the inclusion of diverse plant species in wetland construction or restoration schemes will result in ecologically healthy food webs.

Analysis of Functional Form Groups in Macroalgal Community of Yonggwang Vicinity, Western Coast of Korea (영광 인근 해역 해조군집의 기능형군별 분석)

  • HWANG Eun Kyoung;PARK Chan Sun;SOHN Chul Hyun;KOH Nam Pyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.97-106
    • /
    • 1996
  • Macroalgal community was analysed from December 1993 to October 1994 in Yonggwang vicinity, western coast of Korea. A total 51 species (12 green, 11 brown and 29 red algae) of marine algae were identified. Among four localities, the number of species observed was the highest as 34 species at Shimwon and the least as 31 species at Sunchanggum and Gamakdo. Seasonally, the number of species observed was the highest as 42 species in winter and the least as 18 species in summer. The species showing relatively high important value were Enteromorpha compressa, Sargassum thunbergii, Corallina pilulifera and Carpopeltis affinis, which were all common to four investigated localities. Seasonal and regional fluctuations of mean biomass was $66.0\~820.0\;g-wet\;wt/m^2$ at Hyanghado, $248.3\~886.3\;g-wet\;wt/m^2$ at Sunchanggum, $154.5\~510.2\;g-wet\;wt/m^2$ at Gamakdo and $85.0\~451.9\;g-wet\;wt/m^2$ at Shimwon, respectively. The flora investigated could be classified into six functional groups such as coarsely branched form $(41.2\%)$, sheet form $(25.5\%)$, filamentous form $(19.6\%)$, thick leathery $(7.8\%)$, crustous form $(3.9\%)$ and jointed calcarious form algae $(2.0\%)$. At the effluent area of the nuclear power plants, the algal composition of functional groups may affect species composition due to thermal pollution.

  • PDF

Application of reproductive allocation index to the analysis of growth and maturation patterns of Sargassum macrocarpum C. Agardh in Jeju Island, Korea (제주연안 큰열매모자반의 생장과 성숙패턴 분석을 위한 생식배분 지수의 적용)

  • Ko, Shin Ja;Kim, Yoo Kyung;Hong, Seong Wan;Kang, Min Su;Hwang, Eun Kyoung;Lee, Young Don
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.672-681
    • /
    • 2019
  • The ecological characteristics of Sargassum macrocarpum, an ecologically and commercially valuable brown alga, were investigated from May 2018 to June 2019 in Jeju Island, Korea. The S. macrocarpum population formed patches at depths of 3-5 m. Growth in the length of the alga reached a maximum of 135.3±20.0 cm in June. The weight of the alga reached a maximum of 3.6±2.1 kg·wet-wt in May. The mean density and biomass of S. macrocarpum was 4.5 individuals·m-2 and 4.6 kg·wet-wt.·m-2 in their habitat. Receptacles were observed from April to August and egg release was detected from June to July when the seawater temperatures were 19.3-22.9℃. The developmental initiation of thalli occurred at temperatures above 14.1℃ and maturation required approximately 726.3 degree-days. The reproductive allocation of this alga, calculated from the reproductive frond length(RFL) and reproductive frond weight(RFW) indices to the whole length and weight, reached a maximum of 69.3% in June. The growth and maturation patterns of S. macrocarpum could be divided into vegetative growth (October-January), maturity preparation (February-April), maturation (May-June), egg release (June-July), and resting period (August-September). This was the first study to examine an S. macrocarpum population throughout the entire year in a natural habitat in Jeju Island, Korea.