• Title/Summary/Keyword: Aquatic humic substances

Search Result 13, Processing Time 0.022 seconds

Isolation and Characteristics of Humic Substances in Raw water of Chuncheon-City (춘천지역 상수원수 중 휴믹물질의 분리 및 특성)

  • Lee, Yu-Mi;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.109-114
    • /
    • 2007
  • Humic substances generally comprise 30-50% of the dissolved organic carbon in water. They can affect water quality adversely in several ways and they are important from a water treatment perspective due to their role as precursors for the formation of chlorination by-products such as trihalomethanes. The objectives of this research are to investigate the characteristics of organic matter using raw water of Chuncheon area, to isolate the humic substance fractions from natural water samples, and characterize the extracted humic substances. Humic substances were fractionated according to "isolation of IHSS aquatic humic and fulvic acids" using XAD resin adsorption technique. Characteristics of humic substances were analyzed through DOC, $UV_{254}$, $SUVA_{254}$, FT-IR spectra, fluorescence analysis.

  • PDF

Adsorption and catalytic ozonation of aquatic organic compound by acid-treated granular activated carbon (산 처리한 활성탄을 이용한 수중 유기물의 흡착 및 오존 분해)

  • Nam, Yun-Seon;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.127-132
    • /
    • 2011
  • Humic substances is accounted for for the largest proportion in natural organic matter(NOM) and NOM is widely distributed in varying concentration in all aquatic and soil. They can affect water quality adversely in several ways by contributing undesirable color, complexing with metal and yielding metal concentrations exceeding normal solubility. Ozonation is one of the efficient treatments for degradation of humic substances which cause some problems in water treatment. Especially, the combination of ozone and granular activated carbon was applied to degradation humic acid in aquatic system. The aim of this work to test the available of acid-treated granular activated carbon as catalyst in the ozonation of humic acid.

  • PDF

Spectroscopic Investigations of Soil Humic and Fulvic Acids from Okch'ǒn Basin

  • Hyun Sang Shin;Hichung Moon;Han Beom Yang;Seok Sung Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.777-781
    • /
    • 1994
  • Three humic acids (HA) and one fulvic acid (FA) are extracted from soils of the Okch'on Basin (Koyesan, Yongkwang and Taejon), and are purified and characterized using $^1H,\;^{13}C$ NMR, and IR spectroscopic methods. The results are compared with one another and with commerical humic acid (Aldrich Co) and aquatic humic acid from Gorleben underground aquifer in Germany. The IR and $^1H\;and\;^{13}C$ NMR spectral features are found to be nearly identical, suggesting that humic substances formed in the Okch'on Basin have quite similar chemical properties. These humic substances from Okch'on Basin soils have undergone low degree of aromatic condensation and have high contents of aliphatic functionalities including carbohydrates.

RESEARCH PAPERS : CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN A SHALLOW EUTROPHIC LAKE AND INFLOWING WATERS

  • Kim, Yong-Hwan;Lee, Seon-Hwa;Akio, Imai;Kazuo, Matsushige
    • Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • The seasonal patterns of dissolved organic matter (DOM) in Lake Kasumigaura, a shallow, eutrophic lake, and serveral DOM sources in its catchment area were investigated. DOM was fractionated using three resin adsorbents into classes: aquatic humic substances (AHS=humic acid+fulvic acid), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). The DOM produced significantly different fraction distributions depending on the origin of sample. AHS and HiA prevailed over AHS in the lake while AHS and HiA existed at almost the same concentration levels in the rivers. AHS seems to be a more dominant component in rever water than lake water. The dominance of organic acids was also observed in the DOM sources: forest stream (FS), plowed field percolate (PFP), domestic sewage (DS) and sewage treatment plant effluent (STPE).

Co-precipitation of Turbidity and Dissolved Organic Matters by Coagulation (응집(凝集)에 의한 탁도물질(濁度物質) 및 용존(溶存) 유기물질(有機物質)의 동시제거(同時除去)에 대한 연구(硏究))

  • Jeong, Sang-Gi;Jun, Hang-Bae;Kim, Hag-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • Various humic substances are widely distributed in natural water body, such as rivers and lakes and cause the yellowish or brownish color to water. The evidence that humic substances are precursors of THMs formation in chlorinated drinking water has been reported m the Jiteratures. For the reason of public health as well as aesthetics, needs for humic substances removal have been increased in the conventional water treatment processes. In this research, the characteristics of aluminium coagulation of humic acids and humic acids were investigated. The optimum pH and coagulants dosage to remove these materials simultaneously by coagulation were alto studied. The results are as followed; 1. UV-254 absorptiometry for measuring the concentration of aquatic humic acids showed good applicability and stable results. 2. The optimal pH range for humic acids removal by aluminium coagulation was 5 to 5.5, however, an increase in aluminium coagulant dosage could enhance the removal rate of humic acids in the wide pH range. 3. Coprecipitation of humic acids in the typical pH range of 6.5 to 8 in water treatment processes may require the sweep coagulation mechanism with the excess aluminium coagulant dosage. 4. Using PAC(poly aluminium chloride) or PASS(poly aluminium silica sulfate) as coagulants was able to expand the operating range for removing humic acids. 5. From the coagulation of humic substances(UV-254) and turbidity at pH range of 5.5 - 6.0 and alum dose of 86 ppm, the removal efficiency of turbidity from the reservoir water was above 90% and that of UV-254 was above 70%. 6. By using the reservoir water, the optimum condition of rapid mixing for simultaneous removal of turbidity and UV-254 absorbance was pH of 5.8 and LAS dose of 86 ppm, in this study.

  • PDF

CHARACTERIZATION OF RECALCITRANT DISSOLVED ORGANIC MATTER IN LAKE AND INFLOW RIVER WATERS

  • Kim, Yong-Hwan;Lee, Shun-Hwa;Kim, Jung-Ho;Park, Jong-Woong;Choi, Kwang-Soon
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.181-193
    • /
    • 2006
  • The hydrophilic or hydrophobic characteristics of dissolved organic matter (DOM) from different origins in lake and river waters were investigated using spectrometric and chromatographic analyses of water samples. DOM in a deep, mesotrophic lake (Lake Unmun) was fractionated using three types of ion exchange resins and classified into aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic neutrals (HiN), and bases (BaS). The DOM fractionation provided insight into the understanding of the nature of heterogeneous DOM molecules present in different water sources. The UV/DOC ratios were determined for samples from the influent river and lake waters during DOM fractionation and incubation. AHS prevailed over DOM in the lake and river waters. After biodegradation, the relative contribution of AHS in the total DOM became more significant. It indicates that the AHS fraction would increase while water stay long time in the lake.

Structural and Chemical Characterization of Aquatic Humic Substances in Advanced Water Treatment Processes (고도정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.240-246
    • /
    • 2005
  • Humic substances HS) from process waters at advanced water treatment plant consisted of GAC and Ozone/GAC processes were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, spectroscopic characteristics using FT-IR and $^1H$-NMR spectroscopy. Humic fraction gradually decreased from 36.3% to 24.2% from 0.45 to 0.30 mgC/L) through ozonation and carbon adsorption. The humic fraction was isolated into the phenolic and carboxylic groups using A-21 resin, and the concentration of phenolic groups gradually decreased from 38.4% to 23.5% (from 4.9 to $3.2\;{\mu}M/L$ as phenolic-OH) through ozonation and carbon adsorption. In the case of carboxylic groups, the concentration decreased from 61.6% to 43.3% (from 7.8 to $5.8\;{\mu}M/L$ as COOH) through the water treatment processes. On the other hand, concentrations of those roups decreased from 38.4% to 24.0% and 61.6% to 44.9% through carbon adsorption without ozonation, respectively. The structural changes of HS identified from FT-IR and $^1H$-NMR were consistent with the results from the isolation of functional groups in HS.

Spectroscopic Characterization and Seasonal Distribution of Aquatic Humic Substances Isolated from Han River Water (한강원수로부터 분리된 수중휴믹물질의 계절적 분포와 분광학적 특성분석)

  • Kim, Hyun-Chul;Lee, Seock-Heon;Kim, Kyung-Ju;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.540-547
    • /
    • 2007
  • Humic substances(HS) from Han River water was physic-chemically isolated by fractionational methods to investigate the seasonal distribution and to characterize the properties compared with intrinsic humic materials. Various HS samples were analyzed by element, Fourier transform infrared(FT-IR), proton nuclear magnetic resonance$(^1H-NMR)$ and fluorescence analyzers. The portion of HS from Han River water(HRHS) was 47.0% on the average, however it appeared that rainfall event brought about higher fraction of HS in Han River water by the periodic investigation. Aromaticity and humification degree of the HRHS were relatively lower than those of intrinsic humic materials originated from decomposing vegetation. FT-IR, $^1H-NMR$ and fluorescence spectroscopy showed the distinct differences between HRHS and intrinsic humic materials. Commercial humic materials could not represent structural and functional characteristics of local HS. The fluorescence spectroscopy, a relatively simple measurement, was found most useful tool to estimate humification degree for humic materials from particular sources.

Characterization of Humic Acid in the Chemical Oxidation Technology(I) - Characteristics by Photocatalytic Oxidation Process - (화학적 산화법에 의한 부식산의 분해 처리기술에 관한 연구(I) - 광산화공정을 통한 부식산의 분해특성 분석 -)

  • Kim, Jong Boo;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.234-240
    • /
    • 2000
  • The efficiency of Photocatalytic Oxidation Process were investigated for the treatment of Aquatic Humic Substances (AHS). In UV-only system, pH 7-9 was the optimum pH range for TOC removal, and alkali range was the optimum pH for absorbance decrease. In UV/$TiO_2$ system, the optimum $TiO_2$ dosage was 50ppm and over 50ppm of $TiO_2$ dosage was not effective for removal of AHS. In UV/$H_2O_2$ system, optimum $H_2O_2$ dosage was 20mM, when over 20mM dosage, removal of TOC (Total Organic Carbon) and absorbance was decreased. Radical scavenger affected on the photo-oxidation of AHS. Removal rate of TOC and absorbance was decreased by addition of carbonate ions and TOC removal was more effected than that of absorbance.

  • PDF

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.