• 제목/요약/키워드: Aquatic ecology health

검색결과 82건 처리시간 0.024초

Ecosystem Health Diagnosis Using Integrative Multiple Eco-metric Model Approaches

  • Kim, Hyun-Mac;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • 제36권1호
    • /
    • pp.73-83
    • /
    • 2013
  • The object of this study was to evaluate lotic ecosystem health using multiple eco-metric approaches such as water chemistry diagnosis, physical habitat health evaluations, and biological integrity modeling at 100 streams of four major watersheds. For the study, eight chemical water quality parameters such as nutrients (N, P) and organic material were measured and 11-metric models of Qualitative Habitat Evaluation Index (QHEI) and multiple eco-metric health assessment model (MEHA) were applied to the four major watershed. Nutrient analysis of nitrogen (N) and phosphorus (P) in all watersheds indicated a eutrophic state depending on the locations of sampling streams. Physical habitat health, based on the QHEI model, averaged 114 (range: 56 - 194), judging as a "good condition" by the criteria of Plafkin et al. (1989). In addition, primary (H1 - H4), secondary (H5 - H7), and tertiary habitat metric variables (H8 - H11) were analyzed in relation to the physical habitat degradations. The plots of tolerant species ($P_{TS}$) and sensitive species ($P_{SS}$) to water quality showed that the proportions of $P_{TS}$ had positive linear functions with nutrients, and that the $P_{SS}$ had inverse linear relations with the chemical variables. The model of eco-metric health assessment showed that mean MEHA was 20.4, indicating a fair condition. Overall, our data suggest that water chemistry, based on nutrients and organic matter, directly modified the trophic structures in relation to food chain in the aquatic ecosystems, and then these directly influenced the compositions of tolerance/sensitive species, resulting in degradations of overall ecological health.

Distribution of Freshwater Organisms in the Pyeonggang Stream and Application Effects of Hydrothermal Energy on Variations in Water Temperature by Return Flow in a Stream Ecosystem

  • Dohun Lim;Yoonjin Lee
    • 자원환경지질
    • /
    • 제56권2호
    • /
    • pp.185-199
    • /
    • 2023
  • This study aimed to predict the effects of water ecology on the supply of hydrothermal energy to model a housing complex in Eco Delta Smart Village in Busan. Based on the results, engineering measures were recommended to minimize problems due to possible temperature variations on the supply of hydrothermal energy from the river. The current distribution of fish, benthic macroinvertebrates, and phytoplankton in the Pyeonggang Stream was monitored to determine their effects on water ecology. In the research area, five species and three families of fish were observed. The dominant species was Lepomis macrochirus, and the subdominant species was Carassius auratus. Twenty-five species and 21 families of benthic macroinvertebrates were found. The distribution of aquatic insects was poor in this area. The dominant species were Chironomidae sp., Lymnaea auricularia, Appasus japonicus, and Caridina denticulata denticulata in February, May, July, and October. Dominant phytoplankton were Aulacoseira ambigua and Nitzschia palea in February and May. Microcystis sp. was dominant in July and October. The health of the ecology the Pyeonggang Stream was assessed as D (bad) according to the benthic macroinvertebrate index (BMI). Shifts in the location of the discharge point 150 m downstream from intake points and discharge through embedded rock layer after adding equal amounts of stream water as was taken at the beginning were suggested to minimize water temperature variations due to the application of hydrothermal energy. When the scenario (i.e., quantity of water intake and dilution water, 1,600 m3/d and water temp. difference ±5 ℃) was realized, variations in water temperature were assessed at -0.19 ℃ and 0.59 ℃ during cooling and heating, respectively, at a point 10 m downstream. Water temperatures recorded at -0.20 ℃ and 0.68 ℃ during cooling and heating, respectively, at a point 10 m upstream. All stream water temperatures after the application of hydrothermal energy recovered within 24 hours. Future work on the long-term monitoring of ecosystems is suggested, particularly to analyze the influence of the water environment on hydrothermal energy supply operations.

국내 중소하천에서 피라미 (Zacco platypus)의 복강 기생충 감염특성 (Infestation Characteristics of Parasite (Ligula intestinalis) in Abdominal Cavity of Zacco platypus in the Small Stream of Korea)

  • 신재기;강복규;황순진
    • 생태와환경
    • /
    • 제49권3호
    • /
    • pp.215-227
    • /
    • 2016
  • 담수생태계에서 어류기생충의 종류와 감염경로는 다양하고, 중형 또는 고등동물을 숙주로 하여 생활환을 이어가기 때문에 매우 복잡하다. 그중에서 어류의 복강에 기생하는 충류를 대상으로 수행되었다. 본 연구는 2007년 2월부터 10월까지 섬강에서 생긴 피라미의 기생충에 관한 민원을 해결하고자 생태계의 감염특성을 조사하였다. 섬강에서 복강기생충이 관찰된 시기에 감천, 대포천, 양산천 및 율하천도 동일하게 조사하였다. 저서성대형무척추동물은 수서곤충류와 패류가 각각 90.4%, 7.7%로써 주종을 이루었다. 수서곤충류는 하루살이류 (46.8%)와 날도래류 (29.8%)가 대부분을 차지하였고, 패류는 복족류였다. 어류는 잉어과와 피라미 (Zacco platypus)가 각각 85.7%, 48.8%로써 가장 풍부하였다. 물새 조류는 흰뺨검둥오리 (Anas poecilorhyncha)와 쇠백로 (Egretta garzetta)가 높은 밀도로 우점하였다. 어류기생충은 복강에 주로 기생하는 편형동물문 조충류 Ligula intestinalis로써 분류 동정되었다. 10월에 섬강과 양산천에서 우점 서식한 피라미로부터 각각 1개체, 15개체 관찰되었다. 복강기생충의 감염률은 1.4~15.8% 범위였다. 수서생태계의 조사결과로부터 기생충-숙주 관계의 감염 생활사를 고찰하였다. 본 연구결과는 국내의 육수학적 관점에서 복강기생충의 생태를 이해하는 데 유용한 기초자료로써 활용되기를 기대한다.

우리나라 하천 환경 평가체계의 분석: 생물분야를 중심으로 (Analysis of Stream Environmental Assessment Systems in Korea: Focus on the Biological Aspect)

  • 전승훈;김채백;김우람;박상길;채수권
    • Ecology and Resilient Infrastructure
    • /
    • 제2권2호
    • /
    • pp.108-117
    • /
    • 2015
  • 본 연구는 우리나라 하천수계의 하천환경 관리를 위해 적용되고 있는 생물학적 평가체계를 법제도적 기준과 실행계획 측면에서 검토 분석하여 문제점을 도출하기 위하여 수행되었다. 하천법과 하천사업의 계획 설계과정의 관련 지침, 수질 및 수 생태계 보전법과 수 생태계 건강성 평가 기준을 중점적으로 비교 검토하였다. 무엇보다 하천환경평가 관련 법제도적 근거가 미흡하고 관련 기준과 지침이 구체적이지 못하여 하천환경 관리의 실효성이 확보되지 못하고 있는 것으로 판단되었다. 또한 국토교통부와 환경부로 이원화된 하천수계 관리체계를 반영하듯 생물 분야의 평가항목과 기준이 수자원 관리와의 통합적 수준에 이르지 못한 채 두 부서의 사업추진 과정에서 단편적으로 고려되고 있었다. 특히 생물 중심의 평가항목과 기준은 물리구조적 서식환경 또는 수질과 연관된 수생생물에 국한되어 있을 뿐만 아니라 대다수 생물에 대한 정밀 조사를 필요로 하는 환경영향평가의 과정으로 고려되는 수준이었다. 결론적으로 하천수계를 대표할 수 있고 비교적 변동성이 적은 식생, 어류, 조류 등 고등생물을 지표화한 신속하면서도 공간 정보화된 정량적 평가기법이 마련되어야 할 것으로 판단되었다.

Ecosystem Health Assessments of Changwon Stream as a Preliminary Diagnosis for Aquatic Ecosystem Restoration

  • Han, Jung-Ho;Bae, Dae-Yeul;An, Kwang-Guk
    • 생태와환경
    • /
    • 제40권4호
    • /
    • pp.527-536
    • /
    • 2007
  • In this study, we applied 10-metric health assessment model, based on the Index of Biological Integrity (IBI) during 2006 in the Changwon Stream, which is located in the Changwon city, Gyeongnam province, S. Korea, and then compared with water quality data. The Index of Biological Integrity (IBI) in the Changwon Stream varied from 18 to 38 in the watershed depending on the sampling location and averaged 30.3 (n=6) during the study. Analysis of tolerance guilds showed that the proportion of sensitive species was 13%, but tolerant and intermediate species were 34% and 53%, respectively. Qualitative Habitat Evaluation Index (QHEI) averaged 43.3 (range: 65-104, n=6) indicating non-supporting condition, based on the criteria of U.S. EPA (1993). Values of QHEI showed a typical longitudinal decreases from the headwater reach to the downstream location, except for Site 1 with a low QHEI value by artificial habitat by concrete construction. Minimum QHEI was found in Site 4 where fish diversity was minimal. Conductivity increased continuously along the gradients and especially showed abrupt increases in the downstream sites along with turbidity. Stream ecosystem health of IBI matched to the values of QHEI except for S6. Low IBI values in the sites 4 and 5 was considered to be a result of combined effects of chemical pollutions and habitat degradations. Our results support the hypotheses of Plafkin et ai. (1989) that physical habitat quality directly influences the trophic structure and species richness, and is closely associated with IBI values.

강원도 섬강 (횡성호) 유역의 하천생태계 조사 (A Survey of Ecosystem Structure in the Watershed of the Seom River and Hoengseong Reservoir, Kangwon Province, Korea)

  • 신재기;김영성;황순진
    • 생태와환경
    • /
    • 제49권2호
    • /
    • pp.130-141
    • /
    • 2016
  • This study was conducted to elucidate the structure of river ecosystem in the watershed of the Seom River and Hoengseong Reservoir located in Hoengseong of Kangwon Province from February to October 2007. Topics of the survey were mainly rainfall, discharge, water quality in abiotic factors and attached algae, benthic macroinvertebrates, fish, birds and mammals of flora and fauna in a biotic factors, respectively. Specifically, the Seom River could be seen as a typical flow rate of the stream is controlled to the effect of the dam. Basic water qualities were great to seasonal effects, it was relatively clean. Diatom Achnanthes, Cymbella, Gomphonema, and Navicula were distributed predominantly in the periphytic algae. Benthic macroinvertebrates were mostly aquatic insects and freshwater shellfish, the aquatic insects were abundant Ephemeroptera and Trichoptera. Freshwater fish was the dominant Zacco platypus, fish species varied toward the downstream. Birds were mainly observed in four species, and species Egretta garzetta, which was distributed in a wide area of the Seom River. In mammals, Lutra lutra of Mustelidae was identified that the number of inhabit widely. In aspects of the ecological trophic level, the Seom River was maintained at a relatively stable state in the producer and the consumer relationship. The results of this study will expected to be utilized as a useful data for understanding the structure and function of the lotic and lentic ecosystems.

Population Dynamics of Zacco platypus in Gap-Stream and Its Relation with Water Quality

  • Shin, Young-Eun; Choi, Ji-Woon;An, Kwang-Guk
    • 생태와환경
    • /
    • 제42권4호
    • /
    • pp.422-431
    • /
    • 2009
  • This study was to provide basic data for aquatic ecosystem research using fishes. Field sampling was carried out at five selected sites of Gap Stream, and fish samples, especially for a selection of sentinel species were collected three times in June, September, and October 2007. We analyzed total length distribution of Zacco platypus in relation with the season and the sampling sites, and then compared with total body weight, condition factor (K), and age distribution of the fish. The fish population data were compared with physico-chemical water quality, obtained from the Ministry of Environment, Korea. Water quality analysis showed a significant nutrient enrichment, based on total nitrogen (TN) and total phosphorus (TP), and organic matter pollution, based on biological oxygen demand (BOD) and chemical oxygen demand (COD) in the Site 5, which is directly influenced by wastewater disposal plant (WDP). Population analysis of the sentinel species showed that the total number of individuals, age distribution, and the population size-structure were influenced by the effluents from the WDP, and that reproductive failure of young-age population were evident in Site 5. According to the relation analysis of total weight to K, the disturbed population was mainly attributed to combined effects of habitat modifications and chemical degradations. Regression analysis of K values against water quality parameters showed significant (p<0.05) positive relations with nutrient and organic matter contents. Our data suggest that the population structure using a sentinel fish species reflected the ambient water quality in the stream and that diagnosis of aquatic ecosystem health using Z. platypus population may be practical for water resource and ecosystem conservations.

한반도 연근해를 대상으로 해양 먹이망 기반 3차원 생태모델 구축 연구 (Study on a Three-Dimensional Ecosystem Modeling Framework Based on Marine Food Web in the Korean Peninsula)

  • 조창우;송용식;김창신;윤석현
    • 한국수산과학회지
    • /
    • 제54권2호
    • /
    • pp.194-207
    • /
    • 2021
  • It is necessary to assess and manage the different elements of the marine ecosystem, such as climate change, habitat, primary and secondary production, energy flow, food web, potential yield, and fishing, to maintain the health of the ecosystem as well as support sustainable development of fishery. We set up an ecosystem model around the Korean peninsula to produce scientific predictions necessary for the assessment and management of marine ecosystems and presented the usability of the model with scenario experiments. We used the Atlantis ecosystem model based on the marine food web; Atlantis is a three-dimensional end-to-end model that includes the information and processes within an entire system, from an abiotic environment to human activity. We input the ecological and biological parameters, such as growth, mortality, spawning, recruitment, and migration, to the Atlantis model via functional groups using existing research and local measurements. During the simulation period (2018-2019), we confirmed that the model reproduced the observed data reasonably and reflected the actual ecosystem characteristics appropriately. We thus identified the usability of a marine ecosystem model with experiments on different environmental change scenarios.

어류가두리 양식장의 물질수지 산정 (Mass Balance of Finfish Cage Farm in South Korea)

  • 심보람;김형철;윤상필;홍석진;정우성;강성찬
    • 한국수산과학회지
    • /
    • 제56권4호
    • /
    • pp.473-483
    • /
    • 2023
  • This study was conducted to better understand the impact of marine fish farming by estimating mass balances of carbon and nitrogen. According to the results, 94.55% of carbon and 95.66% of nitrogen inputs were from the feed supplied in the farm. Of the total carbon emissions in the farm, 47.28% was due to fish respiration, which was subsequently released into seawater. Advection and diffusion in the farm contributed to 30.29% of the carbon released. In the case of nitrogen, 50.70% of the nitrogen released into the seawater was produced by fish excreta, and 31.37% was advected and diffused into the system. The sedimentary environment received 3.82% and 3.10% of the carbon and nitrogen released from the farm, respectively. The fish feed used for healthy growth contained 11.64% carbon and 9.17% nitrogen. Since the feed type was floating pellets, the load released into the sedimentary environment was relatively lower than that released into the marine environment. These findings suggest that the identification of an optimal fish feed that respects fish physiology and preserves a healthy ecology is critical for the future of aquaculture. Furthermore, ecosystem-based aquaculture systems that decrease environmental burden, while endeavoring to improve environmental health, are required.

다양한 수생태계에 적용 가능한 유해물질의 영양확대계수 (trophic magnification factor, TMF) 연구 - 생활화학제품에서 기인한 성분과 어류조사를 중심으로 (A Direction of the Monitoring of Household Chemical Products in Aquatic Environments: The Necessities for a Trophic Magnification Factor (TMF) Research on Fish)

  • 원은지;조하은;김도균;홍성진;신경훈
    • 생태와환경
    • /
    • 제55권3호
    • /
    • pp.185-200
    • /
    • 2022
  • 수환경 내 다양한 유해물질의 위해성에 대한 관심은 환경 매체 내 물질의 농도뿐만 아니라 복잡한 먹이단계를 통한 어류 체내의 축적과 어류를 통한 인체 위해성으로 이어진다. 국내의 경우 2016년 이후 생활에서 사용되고 있는 화학제품(생활화학제품) 기인 위해 우려물질의 관리를 위한 등록과 평가 등에 관한 법률 개정과 함께 이들 물질의 환경 배출이 주목받게 됨에 따라 수생태계 내 잔류여부에 대한 조사도 수행되기 시작했다. 최근에는 이러한 물질의 관리를 위한 생태계 내 분포 조사 및 배출 계수 산정을 위한 연구사업이 수행되고 있는데 해당 연구 사업에서는 세정제, 접착제, 염색제, 방향제 등을 비롯한 화장품이나 세제 등에 포함되는 성분과 살균·소독제를 대상으로 영양단계 내 축적과 전달을 이해하기 위한 물질의 축적과 확대를 포함한다. 본 논문은 최근 발표된 생활화학제품기인 유해물질의 수환경 유입 및 분포에 대한 연구 결과를 정리하고 그 과학적 의미를 제시하며 또한 국내외 수행되고 있는 수환경 모니터링 기법에 대한 연구의 예를 바탕으로 현재 유해화학물질의 수환경 내 잔류 농도 및 분포, 생태계 모니터링을 위한 연구의 방향을 제안하고자 한다. 특히 어류를 대상으로 하는 조사에서 국내 수역에 서식하는 주요 어류조사 및 이를 바탕으로 한 대상 어류 선정의 필요성과 인체 위해성 연구의 필요성 등 시기적으로 요구되는 연구를 위한 영양단계 해석과 생물확대계수 연구의 방향을 소개하며 향후 국내에서 수행되고 있는 생물상 모니터링과 화학물질 연구에 대한 제언을 포함한다.