• 제목/요약/키워드: Aquaporin

검색결과 133건 처리시간 0.034초

척수에 뒤집힌 V징후를 가진 시신경척수염: 항아쿠아포린-4항체와 비타민 B12 기능적 결핍 (Neuromyelitis optica spectrum disorders with an inverted V sign on spinal cord magnetic resonance imaging: anti-aquaporin-4 antibody and functional vitamin B12 deficiency)

  • 방성조;김소현;정영석;이서현;석흥열
    • Journal of Medicine and Life Science
    • /
    • 제19권3호
    • /
    • pp.130-133
    • /
    • 2022
  • Several studies have reported a possible link between anti-aquaporin-4 antibody and vitamin B12 deficiency in neuromyelitis optica spectrum disorder (NMOSD). Bilaterally symmetric hyperintense signals on magnetic resonance imaging (MRI) of the posterior columns, called the inverted V sign, are a characteristic feature of subacute combined degeneration associated with vitamin B12 deficiency. We report a patient with anti-aquaporin-4 antibody-positive NMOSD and an inverted V sign on MRI of the spinal cord and address the association between anti-aquaporin-4 antibody and functional vitamin B12 deficiency.

HaCaT Cell에서 황기 에탄올 추출물의 Aquaporin-3 발현 효과 (Ethanol Extract of Astragalus membranaceus Bunge Induces Aquaporin-3 Expression in HaCaT Cells)

  • 박현철;김희택;하헌용;이평재;윤경섭
    • KSBB Journal
    • /
    • 제28권6호
    • /
    • pp.394-399
    • /
    • 2013
  • Astragalus membranaceus Bunge is used in herbal medicine in Eastern Asian countries including Korea. In this study, we assessed the effects of A. membranaceus extract (AM) on the aquaporin-3 (AQP3) protein expression in HaCaT cells. AM did not affect viability of HaCaT cells. AQP3 expression and cell migration seem to be maximal at $100{\mu}g/mL$ concentration. Epidermal growth factor receptor (EGFR) kinase inhibitor, PD153035, blocked AM-induced AQP3 expression and cell migration. In addition, an 80% ethanol extracts of herbal prescription, SinhyoTakleesan (ST), which is composed of A. membranaceus, Angelicae gigantis, Glycyrrhiza glabra Linne, and Lonicera japonica Flos also induced AQP3 expression at $20{\mu}g/mL$ in HaCaT cells. Collectively, these results suggest that AM induce AQP3 expression via EGFR pathway.

Effects of Recombinant Aquaporin 3 and Seawater Acclimation on the Expression of Aquaporin 3 and 8 mRNAs in the Parr and Smolt Stages of Rainbow Trout, Oncorhynchus mykiss

  • Kim, Na Na;Choi, Young Jae;Lim, Sang-Gu;Kim, Bong-Seok;Choi, Cheol Young
    • Ocean and Polar Research
    • /
    • 제38권2호
    • /
    • pp.103-113
    • /
    • 2016
  • This study aimed to examine the role of two aquaporin isoforms (AQP3 and AQP8) in response to the hyperosmotic challenge of transitioning from freshwater (FW) to seawater (SW) during parr and smoltification (smolt) using the rainbow trout, Oncorhynchus mykiss. We examined the changes in the expression of AQPs mRNAs in the gills and intestine of the parr and smolt stages of rainbow trout transferred from FW to SW using quantitative real-time PCR in an osmotically changing environment [FW, SW, and recombinant AQP3 (rAQP3) injection at two dosage rates]. Correspondingly, AQPs were greater during smoltification than during parr stages in the rainbow trout. Plasma osmolality and gill $Na^+/K^+$-ATPase activity increased when the fish were exposed to SW, but these parameters decreased when the fish were exposed to SW following treatment with rAQP3 during the transition to seawater. Our results suggest that AQPs play an important role in water absorbing mechanisms associated with multiple AQP isoforms in a hyperosmotic environment.

한우의 정상 난포와 난포낭종 난포에서 Aquaporin7 발현 양상 (Patterns of Aquaporin 7 Expression in Normal Follicles and Follicular Cyst Follicles of Hanwoo)

  • 김창운;한신규;최창용
    • 한국수정란이식학회지
    • /
    • 제30권1호
    • /
    • pp.17-21
    • /
    • 2015
  • Alteration in ion channel or transporter expression levels affects cell volume which is produced by movement of water and ion across the plasma membrane. In particular, aquaporin (AQP) channels among ion channels play a crucial role in movement of water across the cell membrane. This study was performed to identify whether AQP expression is changed in bovine follicular cystic follicles using microarray, RT-PCR and Western blotting analyses. In microarray data, AQP4 expression was decreased, whereas AQP7 was increased in cystic follicles. Additional experiments were focused on the AQP7 expression increased in cystic follicles. The microarray data was confirmed by semi-quantitative polymerase chain reaction (PCR) and Western blot analysis. AQP7 mRNA and protein expressions were significantly increased in the cystic follicles (p<0.05). Application of estrogen ($10{\mu}g/ml$) to bovine ovarian cells showed a trend of increase in AQP7 expression. From these results, we suggest that the increase in AQP7 expression in cystic follicles may play an important role in movement of water in bovine ovary. In addition, AQP7, a aquaglyceroporin permeating water and glycerol, could be a good target in development of methods for the cryopreservation of bovine ovary.

Xylitol stimulates saliva secretion via muscarinic receptor signaling pathway

  • Park, Eunjoo;Na, Hee Sam;Jeong, Sunghee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제44권2호
    • /
    • pp.62-70
    • /
    • 2019
  • Xylitol is well-known to have an anti-caries effect by inhibiting the replication of cariogenic bacteria. In addition, xylitol enhances saliva secretion. However, the precise molecular mechanism of xylitol on saliva secretion is yet to be elucidated. Thus, in this study, we aimed to investigate the stimulatory effect of xylitol on saliva secretion and to further evaluate the involvement of xylitol in muscarinic type 3 receptor (M3R) signaling. For determining these effects, we measured the saliva flow rate following xylitol treatment in healthy individuals and patients with dry mouth. We further tested the effects of xylitol on M3R signaling in human salivary gland (HSG) cells using real-time quantitative reverse-transcriptase polymerase chain reaction, immunoblotting, and immunostaining. Xylitol candy significantly increased the salivary flow rate and intracellular calcium release in HSG cells via the M3R signaling pathway. In addition, the expressions of M3R and aquaporin 5 were induced by xylitol treatment. Lastly, we investigated the distribution of M3R and aquaporin 5 in HSG cells. Xylitol was found to activate M3R, thereby inducing increases in $Ca^{2+}$ concentration. Stimulation of the muscarinic receptor induced by xylitol activated the internalization of M3R and subsequent trafficking of aquaporin 5. Taken together, these findings suggest a molecular mechanism for secretory effects of xylitol on salivary epithelial cells.

The Effect of Early Intervention and Rehabilitation in the Expression of Aquaporin-4; and Ultrastructure Changes on Rat's Offspring's Damaged Brain Caused by Intrauterine Infection

  • Kumar, Rajesh;Li, Xiaojie;Kong, Xiangying
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권1호
    • /
    • pp.14-21
    • /
    • 2015
  • Objective : To study the effect of early intervention and rehabilitation in the expression of aquaporin-4 and ultrastructure changes on cerebral palsy pups model induced by intrauterine infection. Methods : 20 pregnant Wistar rats were consecutively injected with lipopolysaccharide intraperitoneally. 60 Pups born from lipopolysaccharide group were randomly divided into intervention group (n=30) and non-intervention group (n=30); intervention group further divided into early intervention and rehabilitation group (n=10), acupuncture group (n=10) and consolidate group (n=10). Another 5 pregnant rats were injected with normal saline intraperitoneally; 30 pups born from the normal saline group were taken as control group. The intervention group received early intervention, rehabilitation and acupuncture treatment. The motor functions of all pups were assessed via suspension test and modified BBB locomotor score. Aquaporin-4 expression in brain tissue was studied through immunohistochemical and western-blot analysis. Ultrastructure changes in damaged brain and control group were studied electron-microscopically. Results : The scores of suspension test and modified BBB locomotor test were significantly higher in the control group than the intervention and non intervention group (p<0.01); higher in the intervention group than the non-intervention group (p<0.01). The expression of Aquaporin-4 was lower in intervention and non intervention group than in the control group (p<0.01); also lower in non-intervention group than the intervention group (p<0.01). Marked changes were observed in ultrastructure of cortex and hippocampus CAI in brain damaged group. Conclusion : Early intervention and rehabilitation training can improve the motor function in offspring with brain injury and reduce the expression of aquaporin-4 in damaged brain.

Cloning of Mouse AQP-CD Gene

  • Jung, Jin-Sup;Kim, Joo-In;Oh, Sae-Ok;Park, Mi-Young;Bae, Hae-Rhan;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권2호
    • /
    • pp.195-200
    • /
    • 1997
  • Water transport in highly-permeable membranes is facilitated by some specialized pathways, which are called aquaporins (AQP). AQP1 (AQP-CHIP) is the first recognized aquaporin identified from red cells and renal proximal tubules. Up until now 4 other aquaporin homologs have been reported. Each aquaporin has its unique tissue distribution and regulatory mechanims. To elucidate molecular mechanisms for their transcription regulation and tissue-specific expression isolation of aquaporin genes is required. To clone promoters of the AQP family mouse genomic library was screened by the 1st exon-specific probe of AQP4, and 5 different plaques were positively hybridized. Phage DNAs were purified and characterized by restriction mapping and sequencing. One of them is the mouse AQP-CD gene. The gene was consisted of 4 exons and the exon-intron boundaries of mouse AQP-CD gene were identified at identical positions in other related genes. The 5'-flanking region of AQP-CD gene contains one classic TATA box, a GATA consensus sequence, an E-box and a cyclic AMP-responsive element. The cloning of the mouse AQP-CD gene, of which product is expressed in the collecting duct and is responsible for antidiuresis by vasopressin, will contribute to understand the molecular mechanisms of tissue-specific expression and regulation of AQP-CD gene under various conditions.

  • PDF

절수시 Mongolian gerbil (Meriones unguiculatus) 콩팥의 Aquaporin 2, Aquaporin 4 발현변화 (Upregulation of aquaporin 2 and aquaporin 4 in the water-deprived mongolian gerbil (Meriones unguiculatus) kidney)

  • 송지현;권진석;김용환;박용덕;한기환;류시윤;정주영
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.363-370
    • /
    • 2007
  • Mongolian gerbil (Meriones unguiculatus) has been as an model animal for studing the neurological disease such as stroke and epilepsy because of the congenital incompleteries in Willis circle, as well as the investigation of water metabolism because of the long time-survival in the condition of water-deprived desert condition, compared with other species animal. Aquaporin 2 (AQP2) expressed at the surface of principal cells in collecting duct results from an equilibrium between the AQP2 in intracellular vesicles and the AQP2 on the plasma membrane. Aquaporin 4 (AQP4), which is expressed in cell in a wide range of organ, is also present in the collecting duct principal cells where this is abundant in the basolateral plasma membranes and represent potential exit pathways from the cell for water entering via AQP2. In this research, we divide 3 groups of which each group include the 5 animals. In the study of 7 or 14 days water restricted condition, we investigated the AQP2 and AQP4 by using a quantitative immunohistochemistry in the kidney. The results obtained in this study were summarized as followings. AQP2 is abundant in the apical plasma membrane and apical vesicles in the collecting duct principal cell and at rare abundance in connecting tubules. In the water-deprived Mongolian gerbil kidney, expression of AQP2 was continuosly increased in the cortical collecting duct and inner medullary collecting duct. This increase was both the apical region and cytoplasm. AQP4 is mainly expressed in the inner medulla, although some expression is also noted in the more proximal segment. In the water-deprived Mongolian gerbil kidney, AQP4 was also increased in the inner medullary collecting duct. Immunoactivity was increased in entire inner medullary collecting duct and newly detected in cytoplasm of principal cell. These findings suggest that increased levels of AQP2 and AQP4 in the cortical and inner medulalry collecting duct may play a important role for maintain fluid balance in the water-deprived kidney.

사상성 진균 Aspergillus nidulans에서 아쿠아포린 유전자 aqpA의 분리 및 분석 (Identification and Characterization of the Aquaporin Gene aqpA in a Filamentous Fungus Aspergillus nidulans)

  • 오동순;육함연;한갑훈
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.295-301
    • /
    • 2011
  • 아쿠아포린(aquaporin)은 MIP (Major Intrinsic Protein) 패밀리에 속하는 물 수송 채널(water transport channel) 단백질로 단세포 생물인 박테리아부터 다세포 고등생물인 인간에 이르기까지 다양한 기관계에서 잘 보존되어 있다. 아쿠아포린은 정통아쿠아포린(orthodox aquaporin)과 아쿠아글리세로포린(aquaglyceroporin)으로 구분되는데, 정통아쿠아포린은 주로 세포내의 물 유입 및 수송에 관여하며 아쿠아글리세로포린은 glycerol, polyol, urea를 비롯한 작은 비극성 분자의 수송에 관여하는 것으로 알려져 있다. 최근까지 효모에서 아쿠아포린 기능이 일부 밝혀졌지만 Aspergillus 속을 포함하는 사상성 진균에서는 거의 연구가 되어있지 않은 실정이다. 본 연구에서는 A. nidulans의 유전체 염기서열 정보를 분석하여 하나의 정통아쿠아포린(aqpA)과 네 개의 아쿠아글리세로포린(aqpB-E)을 발견하였다. 이를 바탕으로 aqpA 유전자 결실돌연변이들을 만들어 그 기능을 분석하였다. aqpA 결실돌연변이는 각종 삼투 스트레스(osmotic stress)에서는 표현형의 변화가 거의 관찰되지 않았으며 이는 이들 유전자가 삼투 스트레스에 반응하지 않거나 유전자의 중복성 때문으로 여겨진다. 그러나 항진균제인 fluconazol에 대해서 그 감수성이 적어지는 것이 관찰 되었다. 이는 aqpA 유전자가 삼투스트레스 반응보다 항진균제의 감지에 더 기능을 가지고 있을 수 있음을 시사한다.

Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture

  • Park, Jae-Won;Shin, Yun Kyung;Choen, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권3호
    • /
    • pp.153-160
    • /
    • 2014
  • Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second mid-preimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.