• Title/Summary/Keyword: Aqua regia

Search Result 73, Processing Time 0.029 seconds

Geochemical Characteristics of Mine Wastes in Abandoned Mines in Korea (휴/폐광 광산폐기물의 지구화학적 특성)

  • 정명채;정영욱;민정식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.71-75
    • /
    • 1998
  • The objective of this study is to investigate geochemical characteristics of mine wastes including tailings in various abandoned mines in Korea. Tailings and wastes were sampled in and around 39 metalliferous mines, and analysed heavy metal concentrations including Cd, Cu, Pb and Zn extracted by 0.1N HCl and aqua regia by Atomic Absorption Spectrometry. Measurements of paste pH and lime requirement were carried out to examine a general geochemical characteristics of the materials. Lots of mine wastes were characterized by very low pH values of 2 to 4 and high lime requirement to control neutralization of the wastes. In addition, elevated levels of heavy metals were found in various mine wastes extracted by both 0.lN HCl and aqua regia. Because the mine wastes can be dispersed into the downstream by clastic movement and wind-blow, it is necessary to control the materials with a proper method for their reclamation.

  • PDF

Effect of Soil Grinding on Total Concentrations of As and Pb in Soil Determined by aqua regia Method (토양시료의 분쇄가 왕수분해법을 이용한 비소와 납의 전함량 분석 결과에 미치는 영향)

  • An, Jinsung;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • The effect of soil grinding on total As and Pb concentrations determined by aqua regia method was examined. Among six field-collected, air-dried soil samples tested, soils A, B, C, and E were directly sieved through a $150-{\mu}m$ sieve without grinding and showed 2.18 to 3.03 times higher total As concentrations and 2.62 to 3.45 times higher total Pb concentrations than those of the soil samples prepared to allow all soil particles to pass through the $150-{\mu}m$ sieve by grinding. The reason can be ascribed to the fact that those soils contain fine particles (i.e., < $150{\mu}m$ in diameter) only 4.6 to 6.8% of the total soil weights. On the other hand, for D and F soils, fine particles smaller than $150{\mu}m$ accounted for 57 and 46%, respectively, so that the effect of grinding on As and Pb concentrations were relatively low (As: 1.15 and 1.23 times, Pb: 1.36 and 1.49 times, respectively). The result demonstrates that grinding prior to $150-{\mu}m$ sieving is necessary to ensure the homogeneity of soil samples and hence to obtain more accurate heavy metal concentrations in soils. This is especially true for soil samples with less fine soil particles and/or microaggregates (i.e., below $150{\mu}m$).

Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea (휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • The objectives of this study are to investigate soil contamination in the vicinity of abandoned Au-Ag mine and to apply a remediation technique of liming to tailings. In the study area of the Imcheon Au-Ag mine, soils were sampled in and around the mine the analyzed by Atomic Absorption Spectrometry extracted by both 0.1N HCl and aqua regia. Elevated levels of Cd, Cu, Pb and Zn concentrations extracted by 0.1N HCl were found in soils taken from tailings site. These high contents directly influenced metal concentrations in soils taken in the vicinity of the site. This is mainly due to clastic movement by wind and effluent of mine waste water. In addition, relatively enriched concentrations of the metals were found in soils extrated by aqua regia due to strong decomposition of the samples compared with 0.1N HCl extration. According to the statistical approach, metal concentrations in soils by 0.1N HCl had a positive correlation with those by aqua regia extraction. Mine waste waters and stream waters were also sampled around the mine in spring and summer and analyzed by AAS for Cd, Cu, Pb and Zn, and by Ion Chromatography for anions. Like soils developed over tailings, significant levels of metals and sulphates were found in the mine waste waters ranging of 0.2~0.3, 0.5~2.0, 0.2~2.8, 30~50 and 1,240~4,700 mg/l of Cd, Cu, Pb, Zn and $SO_4^{2-}$, respectively. These elevated levels influenced in the stream waters in the vicinity of the tailings site. In seasonal variation of metal and anion contents, relatively high levels were found in waters sampled on summer due to leaching the metals and anions from tailings by rain. This study also examined the possibility of lime treatment for remediation of acid mine tailings and assumed to be 46 tones of pulverized lime for neutralization of the tailings.

  • PDF

Recovery of Precious Metals from Spent Catalyst Generated in Domestic Petrochemical Industry (한내 석유화학 폐촉매로부터 귀금속의 회수 연구)

  • 김준수;박형규;이후인;김성돈;김철주
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Recovery of precious metal values from petrochemical spent catalyst is important from the viewpoint of environmental protection and resource recycling. Two types of spent catalysts were used in this study. One used in the manufacture of ethylene contains 0.3% Pd in the alumina substrate. The other used in oil refining contains 0.3% Pt and 0.3% Re. Both spent catalysts are roasted to remove volatile matters as carbon and sulfur. Then, metallic Pd powder from Pd spent catalyst is obtained in the course of grinding, hydrochloric acid or aqua regia leaching and cementation with iron. For the recovery of Pt and Re from Pt-Re spent catalyst, Pt and Re are leached with either HCI or aqua regia, first. Metallic Pt powder is recovered from the leach solution by cementation with Fe powder. Re in sulfide form is precipitated by the addition of sodium sulfide to the solution obtained after Pt recovery. It is found that 6N HCI can be successfully used as leaching agent for both types of spent catalyst. 6N HCI is considered to be better than aqua regia in consideration of reagent and equipment cost.

  • PDF

Heavy Metals Extraction from Contaminated Soils using Aqua Regia Extraction (왕수를 이용한 중금속 오염토양에서의 추출방안 연구)

  • Lee, Dukyoung;Jung, Sunkook;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • Aqua regia extraction for the quantification of heavy metals and As in contaminated soils was investigated as one of preliminary steps for on-site monitoring using sensor technology. Soil samples were taken from closed railway depot, closed mines, and closed refinery and various extraction conditions including $30^{\circ}C/15min$, $30^{\circ}C/30min$, $30^{\circ}C/60min$, $30^{\circ}C/120min$, $80^{\circ}C/15min$, $80^{\circ}C/30min$, $80^{\circ}C/60min$, $80^{\circ}C/120min$ were tested. The optimal extraction condition was determined as $80^{\circ}C/60min$ because the extraction efficiencies of Zn were relatively low and did not reach the targeted level (80-100% of original concentrations) for $30^{\circ}C$ conditions. It was found that the fractionation of heavy metals and As using the sequential extraction method was useful to understand the degree of metal extraction. In order to enhance the extraction efficiency within short extraction time, ultrasound technology using a 20 kHz horn-type sonicator was additionally used for $30^{\circ}C/15min$. It was revealed that ultrasound could significantly enhance the extraction efficiency and pulsed irradiation showed higher efficiency than continuous irradiation due to the less formation of bubble clouds. However high temperature condition ($80^{\circ}C$) was required to achieve high extraction efficiency for Zn in spite of the use of ultrasound.

Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils

  • Go, Woo-Ri;Jeong, Seon-Hee;Kunhikrishnan, Anitha;Kim, Gyeong-Jin;Yoo, Ji-Hyock;Cho, Namjun;Kim, Kwon-Rae;Kim, Kye-Hoon;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.464-472
    • /
    • 2014
  • The Codex Committee of Contaminants in Food (CCCF) has been discussing a new standard for arsenic (As) in rice since 2010 and a code of practice for the prevention and reduction of As contamination in rice since 2013. Therefore, our current studies focus on setting a maximum level of As in rice and paddy soil by considering bioavailability in the remediation of As contaminated soils. This study aimed to select an appropriate single chemical extractant for evaluating the mobility of As in paddy soil and the bioavailability of As to rice. Nine different extractants, such as deionized water, 0.01 M $Ca(NO_3)_2$, 0.1 M HCl, 0.2 M $C_6H_8O_7$, 0.43 M $HNO_3$, 0.43 M $CH_3COOH$, 0.5 M $KH_2PO_4$, 1 M HCl, and 1 M $NH_4NO_3$ were used in this study. Total As content in soil was also determined after aqua regia digestion. The As extractability of the was in the order of: Aqua regia > 1 M HCl > 0.5 M $KH_2PO_4$ > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.1 M HCl > 0.43 M $CH_3COOH$ > deionized water > 1 M $NH_4NO_3$ > 0.01 M $Ca(NO_3)_2$. Correlation between soil extractants and As content in rice was in the order of : deionized water > 0.01 M $Ca(NO_3)_2$ > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.5 M $KH_2PO_4$ > 1 M $NH_4NO_3$ > 0.2 M $C_6H_8O_7$ > 0.43 M $HNO_3$ > 1M HCl > Aqua regia. BCF (bioconcentration factor) according to extractants was in the order of : 0.01M $Ca(NO_3)_2$ > 1 M $NH_4NO_3$ > deionized water > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.5 M $KH_2PO_4$ > 1 M HCl > Aqua regia. Therefore, 0.01 M $Ca(NO_3)_2$ ($r=0.78^{**}$) was proven to have the greatest potential for predicting As bioavailability in soil with higher correlation between As in rice and the extractant.

Effect of Pre-treatment Methods on Heavy Metals Analysis of organic Solid Wastes during Composting (퇴비화 과정중 전처리방법에 따른 중금속함량의 변화)

  • Park, Joon-Seok;Ahn, Byung-Koo;Ha, Eun-A
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2002
  • This study was carried out to investigate variation of heavy metal contents for feed materials during composting and to evaluate the effect of pre-treatment methods on heavy metal analysis. Dry ashing, $HNO_3-HClO_4$, aqua-regia, HCl reflux, $HNO_3-HClO_4-HF$, autoclaving methods of $HNO_3$, HCl, and $HNO_3(2+1)$ were used as pre-treatment for heavy metal analysis. In analyzing standard material SRM 2781, recovery efficiencies of pre-treatment methods were 50-60% for Cr and Zn, >100% for Ni, and 80-90% for Cd and Cu. Recovery efficiency of dry ashing for SRM 2781 was the lowest. In composting raw material, Cd concentration by autoclaving methods was 3 to 4 times higher than the other methods and recovery efficiency of dry ashing was also the lowest. During composting, Cd content was the highest in autoclaving. Cr and Cu concentrations were the lowest in dry ashing and aqua-regia, respectively. Variation coefficients of Pb and Zn between pre-treatment methods were generally low.

  • PDF

The Validation Study of Auto Anlysis Method Combined with Aqua Regia Digestion for Fluorine of Soil (왕수분해와 결합한 자동분석법의 토양 중 불소시험 유효성 연구)

  • Na, Kyung-Ho;Yun, In-Chul;Lee, Jung-Bok
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.8-15
    • /
    • 2010
  • The purpose of this research is to check the validation of an auto-analysis method combined with aqua regia digestion apparatus for improvement of water distillation method used as a fluorine test of soil. Fluorine contents of CaO used in the pretreatment course of water distillation method were 120 mg/kg ~ 5,064 mg/kg at the blank test, which was exceeded up to maximum 12.5 times of the soil standard, so it was estimated due to a effect of fluorine existing as impurities of CaO. The recovery test of the same samples indicated that water distillation method and auto-analysis method were 134.5mg/kg and 161.7mg/kg respectively, the recovery ratio of the latter was 16.8% higher than the formal. The validation test of two methods satisfied the standard, but auto analysis method was excellent more than distillation method. Also, auto analysis method could save a analysis time up to maximum 4.7 times by comparison with water distillation method.

상동중석광산 광미에 함유된 중금속의 수직분포도 조사

  • 정명채;강만희;정문영;최연왕
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.52-55
    • /
    • 2003
  • The objective of this study is to investigate the vertical variation of heavy metals in tailings from the Sangdong W mine. Tailings samples were taken at 6 drilling sites with 50cm intervals up to 21meters in depth and dried at room temperature. The pH value, loss-on-ignition and water contents were measured. In addition, chemical compositions of the samples were determined by AAS after 0.1N HC1 leaching and ICP-AES after aqua regia leaching. The pH values were in the range of 7.2 to 8.5 due to chemical reactions of carbonate minerals. The ranges of heavy metals (mg/kg) extracted by 0.1N HC1 were from 0.17 to 0.93 for Cd, 0.04 to 4.39 for Cu, 0.03 to 10.9 for Pb and 0.06 to 14.1 for Zn and those extracted by aqua regia were 3.10~10.5, 23.61 ~251, 63.7~337 and 42.6~134 for Cd, Cu, Pb and Zn, respectively. Generally, the metal concentrations in tailings do not change with depth, with they have a tendency to decrease with depth in some case.

  • PDF

우리나라 토양중 토지용도 및 시험방법별 중금속 분포 특성

  • Kim Tae-Seung;Kim Dong-Ho;Yun Jeong-Gi;Park Jong-Gyeom;Jeong Il-Rok;Kim Jong-Ha;Kim Hyeok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.242-246
    • /
    • 2006
  • Background level of heavy metals In soils (316 points by 15 classifications of land use) was investigated by two test methods, 0.1N HCl(1N HCl for As) extraction and aqua regia extraction methods. The average concentrations of aqua regia extractable heavy metals in soil(n=316) was 6.24(As), 0.25(Cd), 37.99(Cr), 24.10(Cu), 0.04(Hg), 25.68(Pb), 22.59(Ni), 106.11(Zn) mg/kg, respectively. Also the average concentrations of 0.1N HCl extractable heavy metals was 0.06(As), 0.08(Cd), 0.27(Cr), 3.78(Cu), 4.02(Pb), 12.5(Zn), 0.58(Ni) mg/kg, respectively. The ratio of soluble contents and total contents were 2.6%(As), 32.7%(Cd), 0.7%(Cr), 15.7%(Cu), 15.7%(Pb), 2.6%(Ni), 11.8%(Zn), and the correlation coefficient of soluble contents and total contents were 0.26(As), 0.27(Cd), 0.22(Cr), 0.57(Cu), 0.42(Pb), 0.23(Ni), 0.72(Zn).

  • PDF