• 제목/요약/키워드: Apriori 알고리즘

검색결과 89건 처리시간 0.027초

U-마켓에서의 매장 추천방법 (A Store Recommendation Procedure in Ubiquitous Market)

  • 김재경;채경희;김민용
    • 지능정보연구
    • /
    • 제13권4호
    • /
    • pp.45-63
    • /
    • 2007
  • 유비쿼터스 환경에 기반한 시장, 즉 U-마켓에서는 고객이 제품을 구매함과 동시에 고객의 정보가 u-마켓 서버시스템에 저장되어 인터넷 쇼핑몰과 같이 다양한 분석과 활용이 가능하게 되었다. 물리적인 공간과 가상 공간이 결합된 유비쿼터스 기반의 시장 환경에서는 고객이 오프라인에서 다양한 매장을 방문하면서 쇼핑을 하게 되는데, 이때 여러 매장에 동일한 제품이 동시에 존재할 수 있으므로 매장의 위치, 매장 분위기, 제품의 품질이나 가격 등에 대한 고객의 선호도를 반영하여 고객 개개인에게 적절한 매장을 추천해야 할 필요성이 제기된다. 본 논문에서는 유비쿼터스 환경에 기반한 시장에서 고객의 쇼핑 상황을 고려하여 고객의 선호를 반영할 수 있는 매장 추천방법을 제안한다. 제안한 매장 추천방법은 협업 필터링과, Apriori 알고리즘을 기반으로 구성되어 있다. 온라인 쇼핑몰과는 다르게 U-마켓에서는 고객 개개인의 구매목록과 고객의 선호도를 반영한 매장 추천이 필요하며, 본 논문에서 제안하고 있는 매장 추천방법은 고객의 쇼핑경험을 극대화 하고 쇼핑 효율성을 제고시킬 뿐 아니라 장기적인 관점에서 매출증대를 통해 U-마켓 활성화에 기여할 수 있을 것으로 기대한다.

  • PDF

단계 선형 배치 트리를 이용한 순차 패턴 추출 (Mining Sequential Patterns Using Multi-level Linear Location Tree)

  • 최현화;이동하;이전영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.70-72
    • /
    • 2003
  • 대용량 데이터베이스로부터 순차 패턴을 발견하는 문제는 지식 발견 또는 데이터 마이닝(Data Mining) 분야에서 주요한 패턴 추출 문제이다. 순차 패턴은 추출 기법에 있어 연관 규칙의 Apriori 알고리즘과 비슷한 방식을 사용하며 그 과정에서 시퀀스는 해쉬 트리 구조를 통해 다루어 진다. 이러한 해쉬 트리 구조는 항목들의 정렬과 데이터 시퀀스의 지역성을 무시한 저장 구조로 단순 검색을 통한 다수의 복잡한 포인터 연산수행을 기반으로 한다. 본 논문에서는 이러한 해쉬 트리 구조의 단정을 보완한 다단게 선형 배치 트리(MLLT, Multi-level Linear Location Tree)를 제안하고, 다단계 선형 배치 트리를 이용한 효율적인 마이닝 메소드(MLLT-Join)를 소개한다.

  • PDF

연관규칙과 협업적 필터링을 이용한 상품 추천 시스템 개발 (Development of the Goods Recommendation System using Association Rules and Collaborating Filtering)

  • 김지혜;박두순
    • 컴퓨터교육학회논문지
    • /
    • 제9권1호
    • /
    • pp.71-80
    • /
    • 2006
  • 전자상거래가 급속도로 발전함에 따라 고객들의 행동 패턴을 어떻게 발견하느냐와 웹 마이닝 기술을 사용하는 것에 의해 어떻게 상거래를 지능화 할 것인가에 대한 연구가 진행되고 있다. 현재까지 개인화와 상품 추천 시스템을 만들기 위해 가장 성공적이고 가장 넓게 사용되는 기술은 협업필터링 방법이다. 그러나 협업 필터링 방법은 특정 수 이상의 아이템에 대한 평가가 필요하다는 문제를 가지고 있다. 또한, 기존의 연관 규칙 기법은 개인별 사용자의 성향을 반영하지 못하는 단점을 가지고 있다. 본 논문에서는 개선된 Apriori 알고리즘을 이용하고, 아이템들 간에 상호 관계를 가진 협업 필터링 방법을 사용하여 사용자 성향이 반영된 상품 추천 시스템을 개발하였다.

  • PDF

웹 기반 학습 환경에서 개별 적응적 피드백을 지원하는 e-SRM 시스템의 설계 및 구현 (Design and Implementation of e-SRM System Supporting Individual Adjusting Feedback in Web-based Learning Environment)

  • 백장현;김영식
    • 정보교육학회논문지
    • /
    • 제8권3호
    • /
    • pp.307-317
    • /
    • 2004
  • 웹 기반 교육 환경에서 학습자 특성에 따른 개별 적응적인 피드백 제공의 필요성에도 불구하고 학습자 특성의 변인 도출의 어려움과 이를 위한 체계적인 전략과 실천 도구 개발이 미흡한 실정이다. 본 연구에서는 웹 기반 교수 학습 환경에서 중요시되고 있는 학습자 특성 변인 중에서 학습자의 학습 패턴을 Apriori 알고리즘을 이용하여 분석하고, 유사한 학습 패턴을 갖는 학습자들로 그룹화 하였다. 이를 기반으로 학습자 개인에게 학습 콘텐츠, 학습 경로, 학습 상황 등을 제공하기 위한 e-SRM 피드백 시스템을 설계하고 개발하였다. 개발된 시스템은 학습자 특성에 맞는 최적의 학습 환경을 제공해 줄 수 있는 기반을 조성할 수 있을 것으로 기대된다.

  • PDF

연관규칙 분석에 기초한 POS 데이터 분석 시스템 (POS Data Analysis System based on Association Rule Analysis)

  • 안경찬;문창배;김병만;신윤식;김현수
    • 한국산업정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.9-17
    • /
    • 2012
  • 현재 전자상거래를 통한 상품추천 서비스가 많이 연구 되고 서비스되어지고 있다. 정보기술의 발달로 소규모 상점에서도 POS가 많이 보급되어 있지만 전자상거래에 비해 상품추천 서비스가 많이 이뤄지고 있지 않는 실정이다. 이러한 맥락에서 본 연구에서는 데이터마이닝 알고리즘을 POS 판매데이터에 접목하여 연관분석을 이용한 상품추천서비스 시스템을 구현하였다. 또한, 본 연구에서는 기존에 없는 서비스인 소멸규칙 및 새로운규칙, 상승 및 하향규칙을 제안하였다. 상품판매데이터를 이용하여 연관 분석한 결과는 고객에게 적용하여 상품추천서비스를 가능하게 하고 이와 더불어 소멸규칙 및 새로운규칙, 상승 및 하향규칙을 파악하여 경영자에게 경영 의사결정 정보로 제공해 주어 고객의 요구 변화에 신속한 대응이 가능하도록 하였다.

빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝 (Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform)

  • 뉘엔양쯔엉;뉘엔반퀴엣;뉘엔신응억;김경백
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1593-1601
    • /
    • 2017
  • 빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별 (Transaction Pattern Discrimination of Malicious Supply Chain using Tariff-Structured Big Data)

  • 김성찬;송사광;조민희;신수현
    • 한국콘텐츠학회논문지
    • /
    • 제21권2호
    • /
    • pp.121-129
    • /
    • 2021
  • 본 연구에서는 데이터마이닝(Data Mining) 기법 중 하나인 연관관계분석(Association Rule Mining)을 적용하여 위험화물 선별모델을 구축함으로써 관세위험을 최소화하고자 한다. 이를 위해 관세청 수입신고서 빅데이터를 활용하여 연관관계분석 알고리즘인 어프라이어리 알고리즘(Apriori Algorithm)을 적용하고 공급망 간의 위험정도를 계산한다. 대규모의 수입신고 데이터로부터 해외공급자와 수입업체 간의 세율관련(과세가격, 품목, 중수량 등), 원산지표시 위반 등에 관련한 적발결과 관한 규칙셋(Rule Set)과 이 규칙들의 신뢰도(Confidence)을 확보하여 우범공급망 간의 거래패턴을 예측할 수 있는 선별모델을 구축한다. 총 2년 6개월 치의 수입신고 데이터를 활용하여 5-겹 교차검증(5-fold cross validation)을 수행한 결과 16.6%의 Precision과 33.8%의 Recall을 보였다. 이는 빈도기반 방법보다 Precision 기준 약 3.4배 Recall 기준 약 1.5배 높은 결과이다. 이로써 논문에서 제안하고 있는 방법이 관세위험을 줄일 수 있는 효과적인 방법임을 확인하였다.

빈발 패턴 네트워크에서 연관 규칙 발견을 위한 아이템 클러스터링

  • 오경진;정진국;조근식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.321-328
    • /
    • 2007
  • 데이터마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 제안되어 왔다. 본 논문에서는 정점으로 아이템을 표현하고, 간선으로 두 아이템집합을 표현하는 빈발 패턴 네트워크(FPN)이라 불리는 새 자료 구조를 제안한다. 빈발 패턴 네트워크에서 아이템 사이의 연관 관계를 발견하기 위해 이 구조를 어떻게 효율적으로 사용 하느냐에 초점을 두고 있다. 구조의 효율적인 사용을 위하여 한 아이템이 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 네트워크의 정점을 클러스터링하는 방법을 사용한다. 실험은 신뢰도, 상관관계 그리고 간선 가중치 유사도를 이용하여 네트워크에서 아이템 클러스터링의 정확도를 보여준다. 본 논문의 실험 결과를 통해 신뢰도 유사도가 네트워크의 정점을 클러스터링할 때 클러스터의 정확성에 가장 많은 영향을 미친다는 것을 알 수 있었다.

  • PDF

생물학적 데이터 서열들에서 빈번한 최대길이 연속 서열 마이닝 (Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences)

  • 강태호;유재수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.645-648
    • /
    • 2006
  • 생물학적 데이터 서열에는 크게 DNA 서열과 단백질 서열이 있다. 이들 서열 데이터들은 여러 데이터베이스에 걸쳐 매우 방대한 양을 가지고 있으며, 각각의 서열은 수백 또는 수천 개의 항목들을 가지고 있어 길이가 매우 길다. 일반적으로 유전적인 변형, 또는 변이로부터 보존된 영역이나 특정 패턴들을 서열 안에 포함하고 있는데 생물학적 서열 데이터에서 보존된 영역이나 패턴들은 계통발생학적 근거로 활용 될 수도 있으며 기능과 밀접한 관계를 가지기도 한다. 따라서 서열들로부터 빈번하게 발생하는 패턴을 발견하고자 하는 알고리즘 개발이 요구되고 있다. 초창기 Apriori 알고리즘을 변형하여 빈발 패턴을 발견하고자 하는 노력들로부터 근래에는 PrefixSpan 트리를 이용하여 효과적으로 성능을 개선하고 있지만 아직까지는 여러 번의 데이터베이스 접근이 요구되고 있어 성능저하가 발생한다. 이에 본 논문에서는 접미사 트리를 변형하여 데이터베이스 접근을 획기적으로 줄이고 많은 서열들로부터 빈번하게 발생하는 연속적인 서열을 효과적으로 발견하는 방법을 제안한다.

  • PDF

협력적 필터링을 위해 연관 단어 빈도를 이용한 웹 문서 분류 (Classification of Web Documents Using Associative Word Frequency for Collaborative Filtering)

  • 하원식;정경용;정헌만;류중경;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.160-162
    • /
    • 2004
  • 기존의 웹 문서 분류 시스템서는 많은 시간과 노력을 요구하며, 연관 단어가 아닌 단일 단어만으로 웹 문서들을 분류하여 단어의 중의성을 반영하지 못해 많은 오분류가 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 협력적 필터링을 위한 연관 단어 빈도를 사용한 웹 문서 분류 방법을 제안한다. 제안된 방법에서는 웹 문서 내에서 단어들을 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘에 의해 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 반영한다. 수정된 신뢰도를 ARHP 알고리즘에 적용하여 연관 단어들 사이의 유사정도를 계산하고 유사 클래스를 구성한다 생성된 유사 클래스들을 기반으로 웹 문서를 $\alpha$-cut을 이용하여 분류한다 성능평가를 위해 기존의 문서 분류 방법들과 비교 평가를 하였다.

  • PDF