• Title/Summary/Keyword: Approximation-free

Search Result 225, Processing Time 0.028 seconds

Trajectory Optimization of Flexible Manipulators (유연마니퓨레이터의 궤도최적화)

  • 이승재;최연선;야마카와히로시
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.979-983
    • /
    • 2001
  • We develop a new method of simultaneous optimization of trajectory and shape of redundant flexible manipulators for collision-free utilizing the B-spline function and a mathematical programming method We adopt an approximate flexible manipulator model which consists of rigid bar elements and spring elements. We use B-spline function for determining the approximate trajectory and the expressions of the outline of obstacles. The used total performance index consists of 2 performance indices. The first is the driving energy, and the second is the trajectory deviation which is caused by the approximate modeling for the flexible manipulator. We design optimal collision-free trajectory of flexible manipulators by searching optimum positions of the control points for B-spline approximation which minimize the performance index subject to constraint condition for collision-free. Some examinations through numerical examples show the effectiveness of the method

  • PDF

Static analysis of FGM cylinders by a mesh-free method

  • Foroutan, M.;Moradi-Dastjerdi, R.;Sotoodeh-Bahreini, R.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper static analysis of FGM cylinders subjected to internal and external pressure was carried out by a mesh-free method. In this analysis MLS shape functions are used for approximation of displacement field in the weak form of equilibrium equation and essential boundary conditions are imposed by transformation method. Mechanical properties of cylinders were assumed to be variable in the radial direction. Two types of cylinders were analyzed in this work. At first cylinders with infinite length were considered and results obtained for these cylinders were compared with analytical solutions and a very good agreement was seen between them. Then the proposed mesh-free method was used for analysis of cylinders with finite length and two different types of boundary conditions. Results obtained from these analyses were compared with results of finite element analyses and a very good agreement was seen between them.

Free vibration analysis of composite conical shells using the discrete singular convolution algorithm

  • Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.353-366
    • /
    • 2006
  • The discrete singular convolution (DSC) algorithm for determining the frequencies of the free vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical solution of the governing differential equations of motion based on Love's first approximation thin shell theory. By applying the discrete singular convolution method, the free vibration equations of motion of the composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in excellent agreement with those in the literature.

Free vibrational behavior of bi-directional perfect and imperfect axially graded cylindrical shell panel under thermal environment

  • Pankaj S. Ghatage;P. Edwin Sudhagar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.135-145
    • /
    • 2023
  • This study presents the free vibrational responses of bi-directional axially graded cylindrical shell panels using 3D graded finite element approximation under a temperature field. The cylindrical shell panel is graded in two directions and made of metal-ceramic materials. To extract material properties, the Voigt model is combined with a Power-law material distribution. Convergence and validation studies are performed on the developed computational model to ensure its accuracy and effectiveness. Furthermore, a parametric study is performed to evaluate the developed model, which demonstrates that geometrical parameters, imperfect materials (porosity), support conditions, and surface temperature all have a significant impact on the free vibration responses of a bi-directional axially graded cylindrical shell panel in a thermal environment.

An Ambiguity-free Surface Construction from Volume Data (입체적인 데이터에서 애매성-프리 표면 재구성)

  • Lee, Ee-Taek;Oh, Kwang-Man;Park, Kyu Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.55-66
    • /
    • 1998
  • This paper presents a simple method for relieving the ambiguity problems within the sub-voxel based surface-fitting approach for the surface construction. ECB algorithm is proposed to avoid the ambiguity problem which is the root of the holes within the resulting polygon based approximation. The basic idea of our disambiguation strategy is the use of a set of predefined modeling primitives (we call SMP) which guarantees the topological consistency of resulted surface polygons. 20 SMPs are derived from the extension of the concept of the elementary modeling primitives in the CB algorithm [3], and fit one to five faces of them to the iso-surface crossing a cell with no further processing. A look-up table which has a surface triangle list is pre-calculated using these 20 SMPs. All of surface triangles in the table are from the faces of SMPs and are stored in the form of edge list on which vertices of each surface triangle are located. The resulted polygon based approximation is unique at every threshold value and its validity is guaranteed without considering the complicated problems such as average of density and postprocessing. ECB algorithm could be free from the need for the time consuming post-processing, which eliminates holes by revisiting every boundary cell. Through three experiments of surface construction from volume data, its capability of hole avoidance is showed.

  • PDF

Optimum time history analysis of SDOF structures using free scale of Haar wavelet

  • Mahdavi, S.H.;Shojaee, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • In the recent decade, practical of wavelet technique is being utilized in various domain of science. Particularly, engineers are interested to the wavelet solution method in the time series analysis. Fundamentally, seismic responses of structures against time history loading such as an earthquake, illustrates optimum capability of systems. In this paper, a procedure using particularly discrete Haar wavelet basis functions is introduced, to solve dynamic equation of motion. In the proposed approach, a straightforward formulation in a fluent manner is derived from the approximation of the displacements. For this purpose, Haar operational matrix is derived and applied in the dynamic analysis. It's free-scaled matrix converts differential equation of motion to the algebraic equations. It is shown that accuracy of dynamic responses relies on, access of load in the first step, before piecewise analysis added to the technique of equation solver in the last step for large scale of wavelet. To demonstrate the effectiveness of this scheme, improved formulations are extended to the linear and nonlinear structural dynamic analysis. The validity and effectiveness of the developed method is verified with three examples. The results were compared with those from the numerical methods such as Duhamel integration, Runge-Kutta and Wilson-${\theta}$ method.

A numerical study of the performance of a turbomolecular pump (터보분자펌프의 성능해석에 관한 수치해석적 연구)

  • Hwang, Yeong-Gyu;Heo, Jung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3620-3629
    • /
    • 1996
  • In the free molecular flow range, the pumping performance of a turbomolecular pump has been predicted by calculation of the transmission probability which employs the integral method and the test particle Monte-Carlo method. Also, new approximate method combining the double stage solutions, so called double-approximation, is presented here. The calculated values of transmission probability for the single stage agree quantitatively with the previous known numerical results. For a six-stage pump, the Monte-Carlo method is employed to calculate the overall transmission probability for the entire set of blade rows. When the results of the approximate method combining the single stage solutions are compared with those of the Monte-Carlo method at dimensionless blade velocity ratio C=0.4, the previous known approximate method overestimates as much as 34% than does the Monte-Carlo method. But, the new approximate method gives more accurate results, whose relative error is 10% compared to the Monte-Carlo method, than does the previous approximate method.

Nonlinear refractive index measurement for amorphous $As_2S_3$ thin film by Z-scan method (Z-scan 방법에 의한 비정질 $As_2S_3$ 박막의 비선형 굴절률 측정)

  • 김성규;이영락;곽종훈;최옥식;이윤우;송재봉;서호형;이일항
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.5
    • /
    • pp.342-347
    • /
    • 1998
  • We present a theoretical analysis of Gaussian beam propagation in nonlinear Kerr media by using aberration-free approximation and Huygens-Fresnel diffraction integral and obtain a simple analytic formular for Z-scan characteristics. Z-scan experiments are carried out on amorphous $As_2S_3$ thin film and compared with the theory developed, showing good agreement. The sign and the value of ${\gamma}$ have been measured at 633 nm to be $+8.65{\times}10^{-6}\textrm{cm}^2/W$. We also measured the far-field intensity profiles, which confirm again self-focusing effect.

  • PDF

3-Dimensional Free Form Design Using an ASMOD (ASMOD를 이용한 3차원 자유 형상 설계)

  • 김현철;김수영;이창호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.45-50
    • /
    • 1998
  • This paper presents the process generating the 3-dimensional free f o r m hull form by using an ASMOD(Adaptive Spline Modeling of Observation Data) and a hybrid curve approximation. For example, we apply an ASMOD to the generation of a SAC(Sectiona1 Area Curve) in an initial hull form design. That is, we define SACS of real ships as B-spline curves by a hybrid curve approximation (which is the combination method of a B-spline fitting method and a genetic algorithm) and accumulate a database of control points. Then we let ASMOD learn from the correlation of principal dimensions with control points and make the ASMOD model for SAC generation. Identically, we apply an ASMOD to the generation of other hull form characteristic curves - design waterline curve, bottom tangent line, center profile line. Conclus~onally we can generate a design hull form from these hull form characteristic curves.

  • PDF

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF