• Title/Summary/Keyword: Approximation algorithm

Search Result 983, Processing Time 0.026 seconds

Sample Average Approximation Method for Task Assignment with Uncertainty (불확실성을 갖는 작업 할당 문제를 위한 표본 평균 근사법)

  • Gwang, Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The optimal assignment problem between agents and tasks is known as one of the representative problems of combinatorial optimization and an NP-hard problem. This paper covers multi agent-multi task assignment problems with uncertain completion probability. The completion probabilities are generally uncertain due to endogenous (agent or task) or exogenous factors in the system. Assignment decisions without considering uncertainty can be ineffective in a real situation that has volatility. To consider uncertain completion probability mathematically, a mathematical formulation with stochastic programming is illustrated. We also present an algorithm by using the sample average approximation method to solve the problem efficiently. The algorithm can obtain an assignment decision and the upper and lower bounds of the assignment problem. Through numerical experiments, we present the optimality gap and the variance of the gap to confirm the performances of the results. This shows the excellence and robustness of the assignment decisions obtained by the algorithm in the problem with uncertainty.

Comparison of Matrix Exponential Methods for Fuel Burnup Calculations

  • Oh, Hyung-Suk;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7.

  • PDF

Perpendicular Magnetic Recording Channel Equalization Based on Gaussian Sum Approximation of Kalman Filters (Gaussian Sum Approximation을 기반으로 한 Kalman filter의 수직자기 채널 등화기법)

  • Kong, Gyu-Yeol;Cho, Hyun-Min;Choi, Soo-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.297-298
    • /
    • 2008
  • A new equalization method for perpendicular magnetic recording channels is proposed. The proposed equalizer incorporates the Gaussian sum approximation into a Kalman filtering framework to mitigate inter-symbol interference in perpendicular magnetic recording systems. The proposed equalizer consists of a bank of linear equalizers using the Kalman filtering algorithm and its output is obtained by combining the outputs of linear equalizers through the Gaussian sum approximation.

  • PDF

Approximation Method for TS(Takagi-Sugeno) Fuzzy Model in V-type Scope Using Rational Bezier Curves (TS(Takagi-Sugeno) Fuzzy Model V-type구간 Rational Bezier Curves를 이용한 Approximation개선에 관한 연구)

  • 나홍렬;이홍규;홍정화;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.17-20
    • /
    • 2002
  • This paper proposes a new 75 fuzzy model approximation method which reduces error in nonlinear fuzzy model approximation over the V-type decision rules. Employing rational Bezier curves used in computer graphics to represent curves or surfaces, the proposed method approximates the decision rule by constructing a tractable linear equation in the highly non-linear fuzzy rule interval. This algorithm is applied to the self-adjusting air cushion for spinal cord injury patients to automatically distribute the patient's weight evenly and balanced to prevent decubitus. The simulation results indicate that the performance of the proposed method is bettor than that of the conventional TS Fuzzy model in terms of error and stability.

  • PDF

Feature curve extraction from point clouds via developable strip intersection

  • Lee, Kai Wah;Bo, Pengbo
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.

An Approximation of Gaussian Pyramid Top Layer for Simplification of Image Pyramid-based Multi Scale Exposure Fusion Algorithm (이미지 피라미드 기반의 다중 노출 영상 융합기법 단순화를 위한 가우시안 피라미드 최상층 근사화)

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1160-1167
    • /
    • 2019
  • Because of the dynamic range limitation of digital equipment, it is impossible to obtain dark and bright areas at the same time with one shot. In order to solve this problem, an exposure fusion technique for fusing a plurality of images photographed at different exposure amounts into one is being studied. Among them, Laplacian pyramid decomposition based fusion method can generate natural HDR image by fusing images of various scales. But this requires a lot of computation time. Therefore, in this paper, we propose an approximation technique that achieves similar performance and greatly shortens computation time. The concept of vanishing point image for approximation is introduced, and the validity of the proposed approach is verified by comparing the computation time with the resultant image.

Optimization of RC Piers Based on Efficient Reanalysis Technique (효율적인 재해석 기법에 의한 RC 교각의 최적설계)

  • 조효남;민대홍;신만규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.199-204
    • /
    • 2000
  • In this study, an optimum design algorithm using efficient reanalysis is proposed for seismic design of RC Piers. The proposed algorithm for optimization of RC Piers is based on efficient reanalysis technique. Considering structural behavior of RC Piers, several other approximation techniques, such as artificial constraint deletion is introduced to increase the efficiency of optimization. The efficiency and robustness of the proposed algorithm increase the proposed reanalysis technique is demonstrated by comparing it with a conventional optimization algorithm. A few of design examples are optimized to show the applicability of the proposed algorithm.

  • PDF

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

New Message-Passing Decoding Algorithm of LDPC Codes by Partitioning Check Nodes (체크 노드 분할에 의한 LDPC 부호의 새로운 메시지 전달 복호 알고리즘)

  • Kim Sung-Hwan;Jang Min-Ho;No Jong-Seon;Hong Song-Nam;Shin Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.310-317
    • /
    • 2006
  • In this paper, we propose a new sequential message-passing decoding algorithm of low-density parity-check (LDPC) codes by partitioning check nodes. This new decoding algorithm shows better bit error rate(BER) performance than that of the conventional message-passing decoding algorithm, especially for small number of iterations. Analytical results tell us that as the number of partitioned subsets of check nodes increases, the BER performance becomes better. We also derive the recursive equations for mean values of messages at variable nodes by using density evolution with Gaussian approximation. Simulation results also confirm the analytical results.