Kim, Sang-Ho;Choi, Bo-Yoon;Ryu, Keun-Ho;Nam, Kwang-Woo;Park, Jong-Hyun
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
/
pp.715-717
/
2003
Some previous works for nearest neighbor (NN) query processing technique can treat a case that query/data are both moving objects. However, they cannot find exact result owing to vagueness of criterion. In order to escape their limitations and get exact result, we propose new NN query techniques, exact CTNN (continuous trajectory NN) query, approximate CTNN query, and dynamic CTNN query. These are all superior to pervious works, by reducing of number of calculation, considering of trajectory information, and using of continuous query concept. Using these techniques, we can solve any situations and types of NN query in location-aware environment.
스마트 기기의 대중화로 다양한 위치 기반 서비스가 제공되고 있다. 최근에는 소셜 서비스와 결합한 위치 기반 소셜 서비스들이 생겨나고 있다. 이러한 위치 기반 소셜 네트워크 서비스에서는 사용자 중심의 가장 가까운 위치를 검색하는 k-최근접 질의 처리의 요구가 증가된다. 본 논문에서는 대규모 사용자 환경에서 질의를 효율적으로 처리하기 위한 근사 k-최근접 질의 처리 기법을 제안한다. 제안하는 기법은 빅데이터 분산 처리기술을 활용하여 효율적인 스트림 처리를 수행한다. 본 논문에서는 대량의 위치 데이터에 대한 색인을 위해 전통적인 그리드 색인 기법을 변형한 색인 기법을 제안한다. 제안하는 질의 처리기법은 사용자의 진행방향을 고려하여 해당 셀을 우선적으로 탐색한다. 이를 통해 k개의 근사 결과 집합을 생성할 수 있다. 제안하는 기법의 우수성을 입증하기 위해 기존 기법과 다양한 성능 평가를 수행한다.
본 논문에서는 다차원 인덱스 기반 다단계 k-NN 검색의 성능 향상 문제를 다룬다. 기존 다단계 k-NN 검색에서는 고차원 객체의 저차원 변환으로 인한 정보 손실로 k-NN 질의 결과 매우 큰 허용치(검색 범위)가 결정되어 범위 질의 결과로 많은 후보가 검색된다. 또한, 많은 후보는 후처리 과정에서 매우 많은 I/O 및 CPU 오버헤드를 발생시킨다. 본 논문에서는 이와 같은 고찰에 기반하여 범위 질의의 허용치를 줄여 후보 개수를 줄이고 이를 통해 성능을 향상시키는 방법을 제안한다. 먼저, k-NN 질의 결과로 결정된 허용치를 고차원 및 저차원 객체간 거리 비율로 강제 축소하여 범위 질의에 사용하는 허용치 축소 (근사적) 해결책을 제안한다. 다음으로, k-NN 질의 계수 k 대신 c k 를 사용하여 얻은 보다 타이트(tight)한 허용치로 범위 질의를 수행하는 계수 제어 (정확한) 해결책을 제안한다. 실제 객체 데이터를 사용하여 실험한 결과, 제안한 두 가지 해결책은 기존 다단계 k-NN 검색에 비해 후보 개수와 검색 시간 모두를 크게 향상시킨 것으로 나타났다.
International Journal of Control, Automation, and Systems
/
제4권1호
/
pp.17-29
/
2006
A novel inverse kinematics solution based on the back propagation neural network (NN) for redundant manipulators is developed for online obstacles avoidance. A laser transducer at the end-effctor is used for online planning the trajectory. Since the inverse kinematics in the present problem has infinite number of joint angle vectors, a fuzzy reasoning system is designed to generate an approximate value for that vector. This vector is fed into the NN as a hint input vector rather than as a training vector to guide the output of the NN. Simulations are implemented on both three- and four-link redundant planar manipulators to show the effectiveness of the proposed position control system.
k-Nearest Neighbor(k-NN)그래프는 모든 노드에 대한 k-NN 정보를 나타내는 데이터 구조로써, 협업 필터링, 유사도 탐색과 여러 정보검색 및 추천 시스템에서 k-NN그래프를 활용하고 있다. 이러한 장점에도 불구하고 brute-force방법의 k-NN그래프 생성 방법은 $O(n^2)$의 시간복잡도를 갖기 때문에 빅데이터 셋에 대해서는 처리가 곤란하다. 따라서, 고차원, 희소 데이터에 효율적인 Locality Sensitive Hashing 기법을 (key, value)기반의 분산환경인 MapReduce환경에서 사용하여 k-NN그래프를 생성하는 알고리즘이 연구되고 있다. Locality Sensitive Hashing 기법을 사용하여 사용자를 이웃후보 그룹으로 만들고 후보내의 쌍에 대해서만 brute-force하게 유사도를 계산하는 two-stage 방법을 MapReduce환경에서 사용하였다. 특히, 그래프 생성과정 중 유사도 계산하는 부분이 가장 많은 시간이 소요되므로 후보 그룹을 어떻게 만드는 것인지가 중요하다. 기존의 방법은 사이즈가 큰 후보그룹을 방지하는데 한계점이 있다. 본 논문에서는 효율적인 k-NN 그래프 생성을 위하여 사이즈가 큰 후보그룹을 재구성하는 알고리즘을 제시하였다. 실험을 통해 본 논문에서 제안한 알고리즘이 그래프의 정확성, Scan Rate측면에서 좋은 성능을 보임을 확인하였다.
An adaptive output-feedback neural control problem of SISO strict-feedback nonlinear system is considered in this paper. The main contribution of the proposed method is that it is shown that the output-feedback control of the strict-feedback system can be viewed as that of the system in the normal form. As a result, proposed output-feedback control algorithm is much simpler than the previous backstepping-based controllers. Depending heavily on the universal approximation property of the neural network (NN) only one NN is employed to approximate lumped uncertain nonlinearity in the controlled system.
위치 기반 서비스(Location-Based Services: LBS)에서 질의 요청자가 자신의 위치 정보와 원하는 질의를 전송하면, 위치 기반 서버는 이를 기반으로 질의를 처리하고 결과를 전송한다. 이 때 질의 요청자는 자신의 정확한 위치 좌표를 서버에 전송하기 때문에 개인 정보가 악용될 수 있는 위험에 노출된다. 이러한 문제를 해결하기 위하여 제안된 연구는 크게 Location Clocking 기법과 Private Information Retrieval(PIR) 기법으로 분류된다. Location Cloaking 기법은 사용자의 위치 좌표를 k-1개의 다른 사용자와 함께 묶어 하나의 Cloaking 영역을 생성하고 이를 바탕으로 질의를 처리한다. 그러나 영역에 대한 질의 후보 집합을 결과로 전송하므로 사용자에게 노출되는 POI 수가 증가하는 문제점을 지닌다. PIR은 암호화 기법으로 위치 기반 서버나 공격자에게 사용자의 위치와 질의 타입을 드러내지 않고 질의를 수행한다. 그러나 암호화 된 질의 결과로 사용자에게 데이터 전체를 전송하기 때문에 막대한 통신비용을 초래한다. 따라서 본 논문에서는 Location Cloakng과 PIR 기법의 장점을 결합하여 사용자의 개인 정보와 위치 기반 서버의 POI 정보 보호를 고려한 Approximate k-최근접점 질의 처리 알고리즘을 제안한다. 질의 전송시, 질의 요청자는 Cloaking 영역을 생성하여 위치 좌표를 감추고, 질의 결과 전송 시 Cloaking 영역에 제한된 PIR 프로토콜을 적용한다. 또한 k-최근접점 질의 수행시, 반환되는 POI의 수를 최소화하고, 정확도 높은 질의 결과를 만족하기 위해 Overlapping parameter를 적용한 색인 기법을 제안한다.
이동 객체에 대한 기존 최근접(nearest neighbor, NN) 질의 처리 기법들은 질의 궤적에 대해 연속적으로 정확하게, 질의와 가장 가까운 위치를 유지하면서 움직이는 최근접 객체를 선택할 수 있는 충분한 기준을 가지고 있지 못하다. 이 논문은 질의 객체와 데이터 객체가 모두 이동 객체인 경우에 가장 적합하게 사용되는 객체 궤적에 대한 연속적인 질의 처리를 통해 정확한 결과를 얻을 수 있는 새로운 최근접 질의 처리 기법, 연속 궤적 최근접 질의(CTNN, continuous trajectory nearest neighbor query)를 제안한다. 우리는 두 가지 Approximate, Exact CTNN 기법을 제안하며 이들은 모두 항해 시스템, 교통 통제 시스템, 물류정보 시스템 등 각종 위치 기반 서비스(L8S: location based services) 상에서 다양하게 사용될 수 있다. 이들은 이동 객체 궤적이 미리 알려져 있는 경우 그리고 질의와 데이터 객체가 모두 이동 객체인 경우에 가장 적합하다.
For a class of single-input single-output continuous-time nonlinear systems, a multilayer neural network-based controller that feedback-linearizes the system is presented. Control action is used to achieve tracking performance for a state-feedback linearizable but unknown nonlinear system. The multilayer neural network(NN) is used to approximate nonlinear continuous function to any desired degree of accuracy. The weight-update rule of multilayer neural network is derived to satisfy Lyapunov stability. It is shown that all the signals in the closed-loop system are uniformly bounded. Initialization of the network weights is straightforward.
For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.