• Title/Summary/Keyword: Approximate Formulae

Search Result 27, Processing Time 0.017 seconds

Performance Analysis of Space-time Coded MIMO System with Discrete-rate Adaptive Modulation in Ricean Fading Channels

  • Yu, Xiangbin;Rui, Yun;Yin, Xin;Chen, Xiaomin;Li, Mingqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2493-2508
    • /
    • 2012
  • The performance of a MIMO system with adaptive modulation (AM) and space-time coding over Ricean fading channels for perfect and imperfect channel state information (CSI) is presented. The fading gain value is partitioned into a number of regions by which the modulation is adapted according to the region the fading gain falls in. Under a target bit error rate (BER) constraint, the switching thresholds for AM are given. Based on these results, we derive the calculation formulae of the theoretical spectrum efficiency (SE) and average BER. As a result, closed-form SE expression and accurate BER expression are respectively obtained. Besides, using the approximation of complementary error function, a tightly closed-form approximation of average BER is also derived to simplify the calculation of accurate theoretical BER. Computer simulation shows that the theoretical SE and BER are in good agreement with the corresponding simulation, and the approximate BER is also close to the accurate one. The results show that the AM scheme in Ricean fading channel provides better SE than that in Rayleigh fading channel due to the direct-path propagation, and has performance degradation in SE and BER for imperfect CSI.

Sway Added Mass of a Rectangular Cylinder in a Restricted Water

  • Hwang, J.H.;Rhee, K.P.;Kang, C.K.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.3-14
    • /
    • 1982
  • In this paper, the sway added mass of a rectangular cylinder in a restricted water is considered by applying Hamilton's principle as the frequency tends to zero. The present method is an extension of Isshiki's method proposed in 1978. In the present method, it is assumed that the fluid velocity distribution in each subdomain of the fluid can be represented by higher order polynomials while Isshiki assumed linear velocity distribution. The fluid flow is assumed as a rotational motion in the present analysis. However, the results obtained from the present method show good agreement with Bai's numerical results for the case of large clearances between a canal wall and a cylinder. From Kelvin's minimum energy theorem, we can see that the value of sway added mass obtained from the present method approaches the upper bound. The approximate formula obtained in the present study takes a simple form which consists of the dimensions of the canal and the cylinder. The present formulae are derived for the cases of a rectangular cylinder swaying at the center of a narrow or wide canal relative to a cylinder, at off-center location in a canal, and in the restricted water with a single wall. From the results of numerical calculation, it is concluded that the sway added mass in restricted waters is more affected by water depth than clearance between a wall and a cylinder.

  • PDF

An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae (기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정)

  • Jo, Ji-yeong;Lee, Seung-Jae;Choi, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • To prevent and mitigate damage to farms due to heavy snowfall, snow weight information should be provided in addition to snow depth. This study reviews four formulae regarding snow density and weight used in extant studies and applies them in Suwon area to estimate snow weight in Korea. We investigated the observed snow depth of 94 meteorological stations and automatic weather stations (AWS) data over the past 30 years (1988-2017). Based on the spatial distribution of snow depth by area in Korea, much of the fresh snow cover, due to heavy snowfall, occurred in Jeollabuk-do and Gangwon-do. Record snowfalls occurred in Gyeongsangbuk-do and Gangwon-do. However, the most recent heavy snowfall in winter occurred in Gyeonggi-do, Gyeongsangbuk-do, and Jeollanam-do. This implies that even if the snow depth is high, there is no significant damage unless the snow weight is high. The estimation of snow weight in Suwon area yielded different results based on the calculation method of snow density. In general, high snow depth is associated with heavy snow weight. However, maximum snow weight and maximum snow depth do not necessarily occur on the same day. The result of this study can be utilized to estimate the snow weight at other locations in Korea and to carry out snow weight prediction based on a numerical model. Snow weight information is expected to aid in establishing standards for greenhouse design and to reduce the economic losses incurred by farms.

Developing a Computer Program for the Tersional Vibration Analysis of the Marine Diesel Engine Shafting (축차근사법에 의한 박용디이젤 기관축계 비틀림 진동계산의 전산프로그램 개발에 관한 연구)

  • 김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.2-22
    • /
    • 1980
  • In the earlier days, when the diesel engine was used for ship propulsion, its shaft had often been broken by uncertain causes. Bauer suggested, for the first time in 1900, that it resulted from the torsional vibration of the shaft system. From 1901 to 1902, Gumbel and Frahm found out that shaft failures were caused by the resonance of the shaft system in critical speed. Since that time, valuable theories, empirical formulae and methods of vibration analysis were introduced by many investigators such as Geiger, Holzer, Lewis, Carter, Porter, Constant, Timoshenko, Dorey, Den Hartog, Tuplin, Ker Wilson, Bradbury etc. But, as the calculation of the damping energy involves very complicated and uncertain factors, the estimated amplitude of the torsional vibration is incorrect and uncertain. Besides, as high-powered engines have been installed on large vessels or special vessels and exciting force has been increased, new problems of the torsional vibration have continuously occurred. Although we can calculate the approximate natural frequencies or estimate their amplitude and additional stress in the design stage, through the above mentioned studies, the results of the calculations are unsatisfactory, and so much time is needed to carry out the calculation by hand. The authors have developed a computer program to calculate its natural frequencies, the amplitudes and additional stresses of the torsional vibration in the marine diesel engine shafting. In developing the computer program, the authors have paid the special attention to the calculation of the damping energy. To verify the reliability of the developed computer program, the torsional vibration of several propulsion shaftings which are driven by the diesel engine has been analyzed. The results calculted by the authors' computer program show good agreements with those of the actual measurements and are better than the results of engine maker's calculation.

  • PDF

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Forces and Displacements of Outrigger-Braced Structures with a Pair of Coupled Cores (병렬코아를 갖는 아웃리거구조물의 응력과 변위)

  • 정동조;이태희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.291-299
    • /
    • 2003
  • Based on the continuum approach, an investigation is made to get the forces and displacements of laterally loaded outrigger braced structures with a pair of coupled cores, and to show the effect of stiffening outriggers on the behavior of the structure. From the condition that the rotation of the core at the outrigger level is matched with the rotation of the corresponding outrigger, the outrigger restraining moment is derived analytically. From this, the core moment diagram, the column axial forces, and the horizontal displacements of the structure may be determined. Comparisons with the results by the program MIDAS-GEN for the structural models, have shown that this analysis can give reasonably accurate results for outrigger-braced structures with a pair of coupled cores. And a lateral displacement at the top of the structure is influenced by the outrigger location than the core location. Although the formulae are accurate only for idealized outrigger braced structures, they have a useful practical purpose in providing a guide to the behavior, and for making approximate estimates of the forces and displacements, in practical outrigger braced structures with a pair of coupled cores.

Numerical Analysis on the Determination of Hydraulic Characteristics of Rubble Mound Breakwater (경사식 방파제의 수리특성 결정을 위한 수치해석)

  • 박현주;전인식;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.19-33
    • /
    • 2002
  • A numerical method to efficiently secure necessary design informations of the hydraulic characteristics of rubble mound breakwater was attempted here. The method combines the exterior wave field with the interior wave field which is formulated incorporating porous media flow inside the breakwaters. An approximate method based on the long wave assumption was used for the exterior wave field while a boundary element method was used for the interior wave field. A hydraulic experiment was also performed to verify the validity of the numerical analysis. The numerical results were compared with experimental data and results from existing formulae. They generally agreed in both reflection and transmission coefficients. The calculated pore pressures also showed a similar pattern with experimental data, even if they gave some significant differences in their values fur some cases. The main cause of such differences can be attributed to the strongly nonlinear wave field occurring on the frontal slope of the breakwater. The direct input of dynamic pressures(measured from hydraulic experiment) into the numerical method was suggested as a promising method to enhance the predictability of pore pressures.