• 제목/요약/키워드: Approach-Avoidance

검색결과 332건 처리시간 0.027초

A Lane Based Obstacle Avoidance Method for Mobile Robot Navigation

  • Ko, Nak-Yong;Reid G. Simmons;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1693-1703
    • /
    • 2003
  • This paper presents a new local obstacle avoidance method for indoor mobile robots. The method uses a new directional approach called the Lane Method. The Lane Method is combined with a velocity space method i.e., the Curvature-Velocity Method to form the Lane-Curvature Method (LCM). The Lane Method divides the work area into lanes, and then chooses the best lane to follow to optimize travel along a desired goal heading. A local heading is then calculated for entering and following the best lane, and CVM uses this local heading to determine the optimal translational and rotational velocities, considering some physical limitations and environmental constraint. By combining both the directional and velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the physical limitations of the robot motion into account.

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권4호
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.

FEB를 이용한 이동로봇의 장애물 회피와 국지경로계획 (Obstacle Avoidance and Local Path Planning for Mobile Robots using the Fast Elastic Band)

  • 김일환
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.794-798
    • /
    • 2010
  • This paper presents a new obstacle-avoidance method for mobile robots. This approach, called the FEB (Fast Elastic Band) method, has been developed and successfully tested on the experimental mobile robot PHOPE-1S. The FEB method eliminates the shortcomings of the elastic band method previously introduced, yet retains all the advantages of its predecessor. The FEB algorithm is computationally efficient, and it allows continuous and fast motion of the mobile robot without stopping for obstacles. The FEB-controlled mobile robot traverses very densely cluttered obstacle courses and is able to pass through narrow openings or narrow corridors without oscillations. The results of the simulation and experiment have verified the validity of the proposed method.

Integrated Path Planning and Collision Avoidance for an Omni-directional Mobile Robot

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.210-217
    • /
    • 2010
  • This paper presents integrated path planning and collision avoidance for an omni-directional mobile robot. In this scheme, the autonomous mobile robot finds the shortest path by the descendent gradient of a navigation function to reach a goal. In doing so, the robot based on the proposed approach attempts to overcome some of the typical problems that may pose to the conventional robot navigation. In particular, this paper presents a set of analysis for an omni-directional mobile robot to avoid trapped situations for two representative scenarios: 1) Ushaped deep narrow obstacle and 2) narrow passage problem between two obstacles. The proposed navigation scheme eliminates the nonfeasible area for the two cases by the help of the descendent gradient of the navigation function and the characteristics of an omni-directional mobile robot. The simulation results show that the proposed navigation scheme can effectively construct a path-planning system in the capability of reaching a goal and avoiding obstacles despite possible trapped situations under uncertain world knowledge.

A Probabilistic Algorithm for Multi-aircraft Collision Detection and Resolution in 3-D

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권2호
    • /
    • pp.1-8
    • /
    • 2008
  • This paper presents a real-time algorithm for collision detection, collision avoidance and guidance. Three-dimensional point-mass aircraft models are used. For collision detection, conflict probability is calculated by using the Monte-Carlo Simulation. Time at the closest point of approach(CPA) and distance at CPA are needed to determine the collision probability, being compared to certain threshold values. For collision avoidance, one of possible maneuver options is chosen to minimize the collision probability. For guidance to a designated way-point, proportional navigation guidance law is used. Two scenarios on encounter situation are studied to demonstrate the performance of proposed algorithm.

비전과 퍼지규칙을 이용한 이동로봇의 경로계획과 장애물회피 (Obstacle Avoidance and Path Planning for a Mobile Robot Using Vision System and Fuzzy Rule)

  • 배봉규;이원창;강근택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2769-2771
    • /
    • 2000
  • In this paper we propose new algorithms of path planning and obstacle avoidance for an autonomous mobile robot with vision system. Distance variation is included in path planning to approach the target point and avoid obstacles well. The fuzzy rules are also applied to both trajectory planning and obstacle avoidance to improve the autonomy of mobile robot. It is shown by computer simulation that the proposed algorithm is working well.

  • PDF

Obstacle Avoidance of Mobile Robot Based on Behavior Hierarchy by Fuzzy Logic

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권3호
    • /
    • pp.245-249
    • /
    • 2012
  • In this paper, we propose a navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using an ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process.

Modulation of the Time Course of Cardiac Chronotropic Responses during Exposure to Affective Pictures

  • Estate M. Sokhadze;Lee, kyung-Hwa;Lee, Jong-Mee;Oh, Jong-In;Sohn, Jin-Hun
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.290-300
    • /
    • 2000
  • One of the most important topics in attentional and emotional modulation of cardiac responses is time course of cardiac chronotropic response. The reason lies in dual innervation of heart, which leads to occurrence of several phases of cardiac response during exposure to affective stimuli, determined by the balance of sympathetic and parasympathetic influences. Cardiac chronotropic reactivity thus represents quite effective measure capable to trace the moment when attending and orienting processes (i.e., sensory intake of stimulus) prime relevant behavioral response (ile., emotion with approach or avoidance tendencies). The aim of this study was to find the time course of heart rate (HR) responses typical for negative (disgust, surprise, fear, anger) and positive (happiness, pleasant erotic) affective pictures and to identify cardiac response dissociation for emotions with different action tendencies such as "approach" (surprise, anger, happiness) and "avoidance" (fear, sadness, disgust). Forty college students participated in this study where cardiac responses to slides from IAPS intended to evoke basic emotions (surprise, fear, anger, sadness, disgust, happiness, pleasant-erotic). Inter-beat intervals of HR were analyzed on every 10 sec basis during 60 sec long exposure to affective visual stimuli. Obtained results demonstrated that differentiation was observed at the very first 10s of exposure (anger-fear, surprise-sad, surprise-erotic, surprise-happiness paris), reaching the peak of dissociation at 30s (same pairs plus surprise-disgust and surprise-fear) and was still effective for some pairs (surprise-erotic, surprise-sad) even at 50s and 60s. discussed are potential cardiac autonomic mechanisms underlying attention and emotion processes evoked by affective stimulation and theoretical considerations implicated to understand the role of differential cardiac reactivity in the behavioral context (e.g., approach-avoidance tendencies, orienting-defense responses).

  • PDF

Unsupervised Real-time Obstacle Avoidance Technique based on a Hybrid Fuzzy Method for AUVs

  • Anwary, Arif Reza;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.82-86
    • /
    • 2008
  • The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.

퍼지 제어기를 이용한 지능형 차량의 이동장애물 회피에 관한 연구 (A study on Moving OBstacle Avoidance for an Intelligent Vehicle Using Fuzzy Controller)

  • 김훈모
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.155-163
    • /
    • 2000
  • This paper presents a path planning method of the sensor based intelligent vehicle using fuzzy logic controller for avoidance of moving obstacles in unknown environments. Generally it is too difficult and complicated to control intelligent vehicle properly by recognizing unknown terrain with sensors because the great amount of imprecise and ambiguous information has to be considered. In this respect a fuzzy logic can manage such the enormous information in a quite efficient manner. Furthermore it is necessary to use the relative velocity to consider the mobility of obstacles, In order to avoid moving obstacles we must deliberate not only vehicle's relative speed toward obstacles but also self-determined acceleration and steering for the satisfaction of avoidance efficiency. In this study all the primary factors mentioned before are used as the input elements of fuzzy controllers and output signals to control velocity and steering angle of the vehicle. The main purpose of this study is to develop fuzzy controllers for avoiding collision with moving obstacles when they approach the vehicle travelling with straight line and for returning to original trajectory. The ability are and effectiveness of the proposed algorithm are demonstrated by simulations and experiments.

  • PDF