• Title/Summary/Keyword: Approach determining algorithm

Search Result 166, Processing Time 0.029 seconds

Seamless Mobility of Heterogeneous Networks Based on Markov Decision Process

  • Preethi, G.A.;Chandrasekar, C.
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.616-629
    • /
    • 2015
  • A mobile terminal will expect a number of handoffs within its call duration. In the event of a mobile call, when a mobile node moves from one cell to another, it should connect to another access point within its range. In case there is a lack of support of its own network, it must changeover to another base station. In the event of moving on to another network, quality of service parameters need to be considered. In our study we have used the Markov decision process approach for a seamless handoff as it gives the optimum results for selecting a network when compared to other multiple attribute decision making processes. We have used the network cost function for selecting the network for handoff and the connection reward function, which is based on the values of the quality of service parameters. We have also examined the constant bit rate and transmission control protocol packet delivery ratio. We used the policy iteration algorithm for determining the optimal policy. Our enhanced handoff algorithm outperforms other previous multiple attribute decision making methods.

Development of limit equilibrium method as optimization in slope stability analysis

  • Mendjel, D.;Messast, S.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.339-348
    • /
    • 2012
  • The slope stability analysis is usually done using the methods of calculation to rupture. The problem lies in determining the critical failure surface and the corresponding factor of safety (FOS). To evaluate the slope stability by a method of limit equilibrium, there are linear and nonlinear methods. The linear methods are direct methods of calculation of FOS but nonlinear methods require an iterative process. The nonlinear simplified Bishop method's is popular because it can quickly calculate FOS for different slopes. This paper concerns the use of inverse analysis by genetic algorithm (GA) to find out the factor of safety for the slopes using the Bishop simplified method. The analysis is formulated to solve the nonlinear equilibrium equation and find the critical failure surface and the corresponding safety factor. The results obtained by this approach compared with those available in literature illustrate the effectiveness of this inverse method.

A Study of Efficient Spare Capacity Planning Scheme in Mesh-Based Survivable Fiber-Optic Networks (생존성을 갖는 메쉬기반 광전송망에서의 효율적인 예비용량 설계방안에 관한 연구)

  • Bang, Hyung-Bin;Kim, Byung-Gi
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.635-640
    • /
    • 2003
  • Due to the development of information technology and widespread use of telecommunications networks, the design of mesh-survivable net works has received considerable attention in recent years. This paper deals with spare capacity planning scheme in mesh-based fiber-optic networks. In this study, a new spare capacity planning scheme is proposed utilizing path restoration with maximal sharing of share capacity that is traced by the spare capacity incremental factor (after this, we called "SCIF"). We compare it with three other spare capacity planning scheme : link capacity of IP (Integer Programming), SLPA(Spare Link Placement Algorithm) and GA(Genetic Algorithm). The approach shows better performance with heuristics algorithm for determining the spare capacity assignment and the computational time is easily controlled allowing the approach to scale to large networks. The major advantages of the new approach are reduction of spare capacity and a polynomial time complexity.omplexity.

Detecting Line Segment by Incremental Pixel Extension (점진적인 화소 확장에 의한 선분 추출)

  • Lee, Jae-Kwang;Park, Chang-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.292-300
    • /
    • 2008
  • An algorithm for detecting a line segment in an image is presented using incremental pixel extension. We use a different approach from conventional algorithms, such as the Hough transform approach and the line segment grouping approach. The Canny edge is calculated and an arbitrary point is selected among the edge elements. After the arbitrary point is selected, a base line approximating the line segment is calculated and edge pixels within an arbitrary radius are selected. A weighted value is assigned to each edge pixel, which is selected by using the error of the distance and the direction between the pixel and the base line. A line segment is extracted by Jilting a line using the weighted least square method after determining whether selected pixels are linked or delinked using the sum comparison of the weights. The proposed algorithm is compared with two other methods and results show that our algorithm is faster and can detect the real line segment.

  • PDF

A Dynamic Placement Mechanism of Service Function Chaining Based on Software-defined Networking

  • Liu, Yicen;Lu, Yu;Chen, Xingkai;Li, Xi;Qiao, Wenxin;Chen, Liyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4640-4661
    • /
    • 2018
  • To cope with the explosive growth of Internet services, Service Function Chaining (SFC) based on Software-defined Networking (SDN) is an emerging and promising technology that has been suggested to meet this challenge. Determining the placement of Virtual Network Functions (VNFs) and routing paths that optimize the network utilization and resource consumption is a challenging problem, particularly without violating service level agreements (SLAs). This problem is called the optimal SFC placement problem and an Integer Linear Programming (ILP) formulation is provided. A greedy heuristic solution is also provided based on an improved two-step mapping algorithm. The obtained experimental results show that the proposed algorithm can automatically place VNFs at the optimal locations and find the optimal routing paths for each online request. This algorithm can increase the average request acceptance rate by about 17.6% and provide more than 20-fold reduction of the computational complexity compared to the Greedy algorithm. The feasibility of this approach is demonstrated via NetFPGA-10G prototype implementation.

Action Selection by Voting with Loaming Capability for a Behavior-based Control Approach (행동기반 제어방식을 위한 득점과 학습을 통한 행동선택기법)

  • Jeong, S.M.;Oh, S.R.;Yoon, D.Y.;You, B.J.;Chung, C.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.163-168
    • /
    • 2002
  • The voting algorithm for action selection performs self-improvement by Reinforcement learning algorithm in the dynamic environment. The proposed voting algorithm improves the navigation of the robot by adapting the eligibility of the behaviors and determining the Command Set Generator (CGS). The Navigator that using a proposed voting algorithm corresponds to the CGS for giving the weight values and taking the reward values. It is necessary to decide which Command Set control the mobile robot at given time and to select among the candidate actions. The Command Set was learnt online by means as Q-learning. Action Selector compares Q-values of Navigator with Heterogeneous behaviors. Finally, real-world experimentation was carried out. Results show the good performance for the selection on command set as well as the convergence of Q-value.

  • PDF

Successive Backward Sweep Method for Orbit Transfer Augmented with Homotopy Algorithm (호모토피 알고리즘을 이용한 Successive Backward Sweep 최적제어 알고리즘 설계 및 궤도전이 문제에의 적용)

  • Cho, Donghyurn;Kim, Seung Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.620-628
    • /
    • 2016
  • The homotopy algorithm provides a robust method for determining optimal control, in some cases the global minimum solution, as a continuation parameter is varied gradually to regulate the contributions of the nonlinear terms. In this paper, the Successive Backward Sweep (SBS) method, which is insensitive to initial guess, augmented with a homotopy algorithm is suggested. This approach is effective for highly nonlinear problems such as low-thrust trajectory optimization. Often, these highly nonlinear problems have multiple local minima. In this case, the SBS-homotopy method enables one to steadily seek a global minimum.

A Study on the Semiology and Quantitative Psychological Analysis of Sequence Landscape of National Park (국립공원 Sequence 경관의 기호학과 계량심리학적 분석에 관한 연구)

  • 김세천
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.19 no.3
    • /
    • pp.55-71
    • /
    • 1991
  • The purpose of this thesis is to suggest objective basic data for the environmental design through the quantitative analysis of the visual quality included in the physical environment of Basemsagol valley sequence landscape. For this, visual volumes of physical elements have been evaluated by using the mesh analysis, spatial images structure of physical elements have been analyzed by factor analysis algorithm, and degree of visual quality have been measured mainly by questionnaires. Also, this study aims to understand semiotics and to grope the possibility of application to the sequence landscape assessment. A semiological approach suggests a new dimension in sequence landscape assessment, which is a contrast to the existing scientific evaluation methods. Result of this thesis can be summarized as follows. Visual volumes of the immediate vegetation, rock, bridge, road and distant vegetation are found to be the main factor determining the visual quality. Factors covering the spatial image of natural park sequence landscape have been found to be the overall synthetic evaluation, potentiality, natural quality, spatial, appeal and dignity. By using the control method for the number of factors, T.V. has been obtained as 40.22%. The characteristics of the semiological approach is qualitative, open, holistic, and experiential, whereas that of the scientific approach is quantitative, closed, reductive, and experimental.

  • PDF

Moving Object Trajectory based on Kohenen Network for Efficient Navigation of Mobile Robot

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, we propose a novel approach to estimating the real-time moving trajectory of an object is proposed in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the input-output relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.