• Title/Summary/Keyword: Approach delay

Search Result 812, Processing Time 0.025 seconds

A SYSTMATIC APPROACH FOR APPORTIONING CONCURRENT DELAY

  • Nie-Jia Yau;Chia-Chi Chang
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.520-529
    • /
    • 2007
  • Apportioning responsibilities of concurrent delay to the owner and the contractor is a difficult task, due to the sophisticate nature both in the schedule and in the factors that cause the delay. This research attempts to develop a simplified yet systematic approach that can be used for a fair apportionment of concurrent delay. A concurrent delay is defined herein as when the contractor and the owner have both caused independent critical path delays during the same approximate time period. Incorporating the concepts of windows analysis and critical path method (CPM), the developed approach has three "windowing of delay" steps to quickly apportion the delay in each of these windows, and a fourth step to sum up those apportioned delays to obtain each party's final responsibilities. This developed approach is found to be simple and effective at this stage; it will be tested against real cases in the near future.

  • PDF

Singnalized Intersection Delay Model (신호교차로 지체모형)

  • 김영찬;이청원
    • Journal of Korean Society of Transportation
    • /
    • v.9 no.2
    • /
    • pp.27-40
    • /
    • 1991
  • Delay is an widely-used tool for evaluating the operation of signalized intersections. This paper presents two mathematical models: a model converting stop delay into approach delay : and a model estimating delay at isolated signalized intersection. To develop the delay-conversion model, actual stop delay and approach delay experienced by individual vehicles were measured and then their relationship was formulated using ma-thematical procedure. the formula expressing the approach-delay to stop-delay ratio was a monotonously decreasing function of effective red time. New delay model was developed based on the following criteria; the fitness to measured delay for undersaturated traffic condition and the convergence to the deterministic overflow delay for oversaturated traffic condition. Performance of this model was better than those of other existing models based on the comparison study.

  • PDF

A Model for the Estimation of Delay Signalized Intersections (신호등 교차로에서의 지체예측에 관한 연구)

  • 이철기;이승환
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.1
    • /
    • pp.41-54
    • /
    • 1992
  • The purpose of this thesis is to construct a model to estimate the delay that vehicles arriving randomly will be experienced at an isolated singalized intersection. To do this the following objectives are set in this study: (i) An what distance a random arrival pattern occurs after a platoon of vehicles are dis-charged from the stop line; (ii) A model which estimates the average delay per through-vehicle with respect to the de-gree of saturation; and (iii) The relation between the stepped delay and average approach delay per vehicle. The following are the findings of this study: (i) A random arrival pattern on the first second and third lanes occur 300,400 and 300m downstream from stop line rdspectively. A random arrival pattern on lane group occurs 500m downstream from the stop line ; (ii) A model for the estimation of approach delay has been developed in such a way that up to x=0.7 the delay increases linearly and beyond 0.7 the delay increases rapidly in a form of second order polynomial due to high degree of saturation : and (iii) Approach delay equals approximately 1.21 times of stopped delay.

  • PDF

Roundabout Signal Metering Operation Methods by Considering Approach Lane's Degree of Saturation (접근로별 포화도를 고려한 Roundabout Signal Metering 운영방법에 관한 연구)

  • Ahn, Woo-Young;Lee, So-Young
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.217-226
    • /
    • 2013
  • PURPOSES : Under the capacity conditions with balanced approach flows, roundabouts give less delay than existing signalized intersections; however, flows over 450 vehicles/hour/lane with unbalanced approach flow conditions, roundabouts efficiency drops due to the short time difference between the critical gap and the follow-up headway. The purpose of this study is developing a roundabout Signal Metering operation method by considering approach lanes degree of saturation. METHODS : A four-way-approach with one-lane roundabout is selected to compare the Signal Metering performance for the case of 16 different unbalanced flow conditions. Based on these traffic conditions, the performance is evaluated for 64 different cases of Signal Metering combinations by using SIDRA software. A degree of saturation(V/C ratio) sum for two adjoined approaches is used for the performance index of choosing Metered Approach and Controlling Approach. RESULTS : When the V/C ratio sum is 0.29~0.81 and Metered Approach flow is less than Controlling Approach flow, the average delay saving per vehicle is about 7 seconds; however, after this rage the delay saving decreases gradually until the V/C ratio sum reaches around 1.0. The range of V/C ratio sum 0.93~1.09 provides average delay saving per vehicle about 3 seconds. In case of V/C ratio sum is grater than 1.0 and the flows of Metered Approach is grater than Controlling Approach, the average delay per vehicle increases 3~11 times respectively. CONCLUSIONS : As expected, the Signal Metering provides substantial improvements in delay saving for the case of V/C ratio sum is 0.3~1.0 under the traffic flow conditions of Metered Approach is less than Controlling Approach.

A stabilizing control technique for bilateral teleoperation system with time delay

  • Kim, H.W.;Suh, I.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.336-341
    • /
    • 2004
  • In this paper, a hybrid stabilization approach involving both passivity observer/passivity controller and wave variables is addressed to stabilize a teleoperation system with fixed time delay. To guarantee the stability of master or slave side, passivity observer/passivity controller are applied. But, passivity observer/passivity controller cannot deal with communication delay, and thus even small communication delay cause the system to be unstable. To cope with this problem, wave variables are additionally employed to have robustness to fixed communication delays. To show the validity of our proposed approach, several computer simulation results are illustrated.

  • PDF

A new approach to passive bilateral teleoperation with varying time delay (가변 시간 지연에 대해 안정한 쌍방향 텔레오퍼레이션)

  • Zhang, Changlei;Lee, Yee-Dong;Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.23-25
    • /
    • 2005
  • This paper is devoted to the passivity based control in bilateral teleoperation for varying time delay. Toimprove the stability and task performance, master and slave in bilateral teleoperation must be coupled via the network through which the force and velocity are communicated. However, time delay existing in the transmission channel is a long standing impediment to bilateral control and can destabilize the system, even if the system is stable without time delay, In this paper, we investigate how the varying time delay affects the advanced teleoperation stability and results in an out-of-control status. A new approach based on passivity control has been bilaterally designed for both the master and slave sites and the simulation result will verify that our approach is better and effective for passive bilateral teleoperation.

  • PDF

Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach (시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

Microwave Negative Group Delay Circuit: Filter Synthesis Approach

  • Park, Junsik;Chaudhary, Girdhari;Jeong, Junhyung;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • This paper presents the design of a negative group delay circuit (NGDC) using the filter synthesis approach. The proposed design method is based on a frequency transformation from a low-pass filter (LPF) to a bandstop filter (BSF). The predefined negative group delay (NGD) can be obtained by inserting resistors into resonators. To implement a circuit with a distributed transmission line, a circuit conversion technique is employed. Both theoretical and experimental results are provided for validating of the proposed approach. For NGD bandwidth and magnitude flatness enhancements, two second-order NGDCs with slightly different center frequencies are cascaded. In the experiment, group delay of $5.9{\pm}0.5ns$ and insertion loss of $39.95{\pm}0.5dB$ are obtained in the frequency range of 1.935-2.001 GHz.

AN AUSTRALIAN PERSPECTIVE OF THE SUITABILITY OF THE SCL PROTOCOL'S PROVISIONS FOR DEALING WITH FLOAT FOR ADOPTION AND USE BY THE AUSTRALIAN CONSTRUCTION INDUSTRY

  • Peter Ward
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.340-349
    • /
    • 2011
  • During the negotiation and resolution of delay and disruption disputes on construction projects, the use and misappropriation of float, and the question of float ownership, are considered to be a major concern to those involved. Most practitioners and authors are of the opinion that it is an issue that should be clearly defined and addressed within the provisions of the contract. However, the terms "float" or "ownership of float" are rarely mentioned (if at all) in most of the standard forms of Australian construction contracts, giving little guidance to those involved as to how this issue should be addressed. In October 2002 the United Kingdoms Society of Construction Law (SCL) published a Delay and Disruption Protocol (the Protocol) that contains a suggested approach to the issue. The aim of this research was to obtain an Australian opinion of the suitability of the SCL's Delay and Disruption Protocols suggested approach to the issue of float and ownership of float for use by the Australian construction industry. Qualitative interviews were carried out with Australian construction industry experts experienced in the administration, negotiation, and resolution of delay and disruption disputes to obtain their opinions of the suitability of the SCL's proposed approach. Results indicate general confusion and uncertainty as to how the issue of float and float ownership should be addressed in general, with the SCL's approach adding further to that confusion.

  • PDF