• Title/Summary/Keyword: Approach Speed

Search Result 1,865, Processing Time 0.031 seconds

SOIL FAILURE AND ITS APPLICATION TO VIBRATING TILLAGE TOOL

  • Niyamapa, Tanya
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1053-1062
    • /
    • 1993
  • The effect of loading speed on soil failure was studied by using a high speed triaxial compression test. Tests were conducted at 0.35-6.2m/s loading speed to compress soil specimens of sandy loam at different moisture contents. The axial stress at fracture increased with increase in loading speed up to certain critical speeds, however they decreased as the speed up to certain critical speeds, however they decreased as the speed increased further. Experiments were also conducted in the field of sandy loam soil with the vibrating tillage tool. Tests were done at 0.33-0.85m/s tractor speed oscillating frequency 13.7hz and oscillating amplitude 59mm. The maximum oscillating velocity of tillage tool was 2.5m/s. It was observed that for the oscillating operation, initially draft slightly increased with increase in forward speed and then it decreased .For the non-oscillating operation, draft increased continuously with increase in forward speed. Approach of studying soil failure in the laboratory test can be related to the field experiments.

  • PDF

A Study on Automatic Detection of Speed Bump by using Mathematical Morphology Image Filters while Driving (수학적 형태학 처리를 통한 주행 중 과속 방지턱 자동 탐지 방안)

  • Joo, Yong Jin;Hahm, Chang Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.55-62
    • /
    • 2013
  • This paper aims to detect Speed Bump by using Omni-directional Camera and to suggest Real-time update scheme of Speed Bump through Vision Based Approach. In order to detect Speed Bump from sequence of camera images, noise should be removed as well as spot estimated as shape and pattern for speed bump should be detected first. Now that speed bump has a regular form of white and yellow area, we extracted speed bump on the road by applying erosion and dilation morphological operations and by using the HSV color model. By collecting huge panoramic images from the camera, we are able to detect the target object and to calculate the distance through GPS log data. Last but not least, we evaluated accuracy of obtained result and detection algorithm by implementing SLAMS (Simultaneous Localization and Mapping system).

Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running (초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Lee, Kang-Myung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2015
  • The development of railway roadbed for 600km/h train speed level is very difficult because unpredictable static and dynamic interaction occurs between the ultra-high speed train and the infrastructure. Especially, an earthwork-bridge transition zone is a section in which influential factors react, such as bearing capacity, compression, settlement, drainage, and track irregularity; these interactions can include complicated dynamic interaction. Therefore, if static and dynamic stability are secured in transition zones, it is possible to develop roadbeds for ultra-high speed railways. In the present paper, design parameters for transition reinforcement applied to present railway design criteria are analytically examined for ultra-high speed usage on a preferential basis. Design parameters are the presence of reinforcing materials, geometric shape, stiffness of materials, and so on. Analysis is focused on the deformation response of the track and running stability at ultra-high speed.

A Review on the Performance Test of a High-Speed Planing Hull with 35 knot Speed by Appling the Streamlined Step of Hull Form (유선형 스텝 선형을 적용한 35 knot급 고속활주선의 성능평가에 대한 고찰)

  • Moon, Byung Young;Go, Ho Nam;Lee, Ki Yeol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.95-102
    • /
    • 2018
  • As a recent technical approach, a high-speed planing hull was tried to realize a friction reducing system by simultaneously actuating the triple streamlined step hull form in association with optimum speed of 35 knot planing for fishing boat. In this approach, the streamlined step hull form with triple structure of type was attached under the bottom of high-speed planing hull, while a friction resistance is reduced in the process of running at the speed of 35 knot. In addition, this research was to make a performance test as to the manufactured product and acquire the purposed values and the development items. Actually, after manufacturing the desired prototype of high-speed planing hull, the significant items, fuel efficiency (second) and amount of fuel consumption (degree) including maximum speed (knot) were estimated for a performance test. And tensile strength (MPa) and bend strength (MPa) as to the completed prototype like a high speed planing hull were also acquired during the test.

Analysis on Intersection Traffic Signal Locations Change and Characteristics of Dilemma Zone (교차로 신호기 위치 조정과 딜레마존 특성 분석)

  • Lim, Sam Jin;Lee, Young-Ihn;Kim, Kyung Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.3-13
    • /
    • 2013
  • This paper reviews the characteristics of dilemma zone by analysing the influence exerted by actual location of intersection traffic signal on behaviour of drivers approaching signalized intersection in urban area. The analysis of approach speed was based upon a 'before and after' comparison, measured at three sites where the locations of traffic signals were changed. The study demonstrated that, when traffic signal changed to yellow, the scales of dilemma zone were narrowed in case of stopping cars by moving up the starting point of the dilemma zone due to lowered spot speed. On the other hand, in case of passing cars, the end points of dilemma zone were moved further out to the rear due to increased spot speed. Therefore, changing traffic signal locations could make an impact to increase intersection safety through reducing the scales of dilemma zone. This study also found that, in cases involving vehicles with similar approach speeds, spot speeds could be differentiated following the change of signal locations due to the fact that there can be greater differences in both braking point and deceleration rate. Thus, when considering the appropriate measuring of dilemma zone, 'spot speed' rather than 'approach speed' appeared to be more appropriate criterion.

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.

Design to Reduce Cost and Improve the Mechanical Durability of IPMSM in Traction Motors

  • Lee, Ki-Doek;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.106-114
    • /
    • 2014
  • The interior permanent-magnet synchronous motor (IPMSM) is often used for the traction motor of hybrid electric vehicles (HEVs) and electric vehicles (EVs) due to its high power density and wide speed range. This paper introduces the 120kW class IPMSM for traction motors in military trucks. This system, as a SHEV (series hybrid electric vehicle), requires a traction motor that can generate high torque. This study introduces a way to reduce costs by proposing a design approach that creates reluctance torque that can be maximized by varying the dq-axis inductance. If a model designed by a design approach meets the desired torque, the magnetic torque can be reduced by an amount equal to the increase in reluctance torque and consequently the amount of permanent magnets can be reduced. A reduction gear and high speed operation of motors are necessary for the miniaturization of the motor. Thus, a fairly large centrifugal force is generated due to the high speed rotation. This force causes mechanical interference between the rotor and the stator, and a design approach for adding an iron bridge is explained to solve the interference. In this study, the initial model and the improved model that reduces cost and improves mechanical durability are compared by FEA, and the models are produced. Finally, the FEM results were verified experimentally.

Real-time prediction of dynamic irregularity and acceleration of HSR bridges using modified LSGAN and in-service train

  • Huile Li;Tianyu Wang;Huan Yan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.501-516
    • /
    • 2023
  • Dynamic irregularity and acceleration of bridges subjected to high-speed trains provide crucial information for comprehensive evaluation of the health state of under-track structures. This paper proposes a novel approach for real-time estimation of vertical track dynamic irregularity and bridge acceleration using deep generative adversarial network (GAN) and vibration data from in-service train. The vehicle-body and bogie acceleration responses are correlated with the two target variables by modeling train-bridge interaction (TBI) through least squares generative adversarial network (LSGAN). To realize supervised learning required in the present task, the conventional LSGAN is modified by implementing new loss function and linear activation function. The proposed approach can offer pointwise and accurate estimates of track dynamic irregularity and bridge acceleration, allowing frequent inspection of high-speed railway (HSR) bridges in an economical way. Thanks to its applicability in scenarios of high noise level and critical resonance condition, the proposed approach has a promising prospect in engineering applications.

Improved Power Quality IHQRR-BIFRED Converter Fed BLDC Motor Drive

  • Singh, Bhim;Bist, Vashist
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.256-263
    • /
    • 2013
  • This paper presents an IHQRR (Integrated High Quality Rectifier Regulator) BIFRED (Boost Integrated Flyback Rectifier Energy Storage DC-DC) converter fed BLDC (Brushless DC) motor drive. A reduced sensor topology is derived by utilizing a BIFRED converter to operate in a dual DCM (Discontinuous Conduction Mode) thus utilizing a voltage follower approach for the PFC (Power Factor Correction) and voltage control. A new approach for speed control is proposed using a single voltage sensor. The speed of the BLDC motor drive is controlled by varying the DC link voltage of the front end converter. Moreover, fundamental frequency switching of the VSI's (Voltage Source Inverter) switches is used for the electronic commutation of the BLDC motor which reduces the switching losses in the VSI. The proposed drive is designed for a wide range of speed control with an improved power quality at the AC mains which falls within the recommended limits imposed by international power quality standards such as IEC 61000-3-2.

Pattern Recognition of Monitored Waveforms from Power Supplies Feeding High-Speed Rail Systems

  • Gu, Wei;Zhang, Shuai;Yuan, Xiaodong;Chen, Bing;Bai, Jingjing
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.55-64
    • /
    • 2016
  • The development of high-speed rail (HSR) has had a major impact on the power supply grid. Based on the monitored waveforms of HSR, a pattern recognition approach is proposed for the first time in this paper to identify the operating conditions. To reduce the data dimensions for monitored waveforms, the principal component analysis (PCA) algorithm was used to extract the characteristics and their waveforms from the monitored waveforms data. The dynamic time wrapping (DTW) algorithm was then used to identify the operating conditions of the HSR. Cases studies show that the proposed approach is effective and feasible, and that it is possible to identify the real-time operating conditions based on the monitored waveforms.