• Title/Summary/Keyword: Applied nutrition

Search Result 2,256, Processing Time 0.027 seconds

Historical background and development of applied nutrition and community nutrition in Korea

  • Mo, Su-Mi
    • Nutrition Research and Practice
    • /
    • v.1 no.1
    • /
    • pp.3-7
    • /
    • 2007
  • This paper overviews the historical background and development of applied nutrition and community nutrition in Korea. The nutrition studies in the early years focused on animal experiments, human metabolism, and food analysis and therefore were limited to classrooms and research laboratories in universities without spreading into the lives of people. Korean specialists trained through the UN International Course of Applied Nutrition initiated the Applied Nutrition Program (ANP) in Korea in the 1960s. The ANP in Korea was effectively implemented until 1986 with support from UNICEF, FAO, and WHO as a national project to improve the nutrition and health of rural residents. With economic development and urbanization in Korea, the rural-focusing ANP was re-born to a more extended version with the name of "Community Nutrition", targeting the nutrition and health of the entire Korean population. Scholarly associations including the Korean Society of Community Nutrition established in 1995 have significantly contributed to the development of Community Nutrition in Korea and are expected to continue to work for a better connection between nutrition and health promotion.

Cloning and Sequencing of the ddh Gene involved in the Novel Pathway of Lysine Biosynthesis from Brevibacterium lactofermentum

  • Kim, Ok-Mi;Kim, Hyun-Jeong;Kim, Dal-Sang;Park, Dong-Chul;Lee, Kap-Rang
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.5
    • /
    • pp.250-256
    • /
    • 1995
  • The ddh gene encoding meso-diaminopimelate (meso-DAP)-dehydrogenase (DDH) in Brevibacterium lactofermentum was isolated by complementation of the Escherichia coli dapD mutation. It was supposed from subcloning experiments and complementation tests that the evidence for DDH activity appeared in about 2.5 kb Xhol fragmented genome. The 2.5 kb Xhol fragment containing the ddh gene was sequenced, and an open reading frame of 960 bp encoding a polypeptide comprising 320 amino acids was found. Computer analysis indicated that the deduced amino acid of the B. lactofermentum ddh gene showed a high homology with that of the Corynebacterium glutamicum ddh gene.

  • PDF

Effect of Heating on Polymerization of Pig Skin Collagen Using Microbial Transglutaminase

  • Erwanto, Yuny;Muguruma, Michio;Kawahara, Satoshi;Tsutsumi, Takahiko;Katayama, Kazunori;Yamauchi, Kiyoshi;Morishita, Toshiro;Morishita, Toshiro;Watanabe, Shohei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1204-1209
    • /
    • 2002
  • Polymerization of heated or unheated pig skin collagen using microbial transglutaminase (MTGase) was investigated. Pig skin collagen samples were heated or left unheated, then enzymatically polymerized with MTGase. SDS-PAGE was conducted to confirm the intermolecular polymer and the results showed similar bands between samples without MTGase and unheated samples with MTGase. The polymerized product of pig skin collagen was not formed in unheated samples, even when MTGase was added during incubation. Different results were obtained from samples heated at $80^{\circ}C$ and $100^{\circ}C$ for 2 min, whereas the SDS-PAGE pattern indicated that a polymer band was generated in both cases. The heat treatment successfully modified the native structure of collagen and also made collagen more reactable in the MTGase polymerization system. Scanning Electron Microscope (SEM) investigation of pig skin collagen showed a biopolymer structure through intermolecular collagen crosslinking, while there were no intermolecular crosslinks in samples not treated with MTGase. There were no significant differences in fibril diameter between treated samples and controls. These results suggest that heat treatment of native pig skin collagen enhanced the polymerization capability of MTGase.