• Title/Summary/Keyword: Application timing

Search Result 347, Processing Time 0.025 seconds

Implementing stream processing functionalities of Splash (Splash의 스트림 프로세싱 기능 구현)

  • Ahn, Jaeho;Noh, Soonhyun;Hong, Seongsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.377-380
    • /
    • 2019
  • To accommodate for the difficult task of satisfying application's system timing constraints, we are developing Splash, a real time stream processing language for embedded AI applications. Splash is a graphical programming language that designs applications through data flow graph which, later automatically generates into codes. The codes are compiled and executed on top of the Splash runtime system. The Splash runtime system supports two aspects of the application. First, it supports the basic stream processing functions required for an application to operate on multiple streams of data. Second, it supports the checking and handling of the user configurated timing constraints. In this paper we explain the implementation of the first aspect of the Splash runtime system which is being developed using a real time communication middleware called DDS.

  • PDF

A Study on the Strategy of Fuel Injection Timing according to Application of Exhaust Gas Recirculation for Off-road Engine (배기가스재순환 적용에 따른 Off-road 엔진의 연료 분사 시기 전략에 관한 연구)

  • Ha, Hyeongsoo;Shin, Jaesik;Pyo, Sukang;Jung, Haksup;Kang, Jungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.447-453
    • /
    • 2016
  • The reduction technologies of exhaust gas from both the off-road engine and on-road vehicles are important. It is possible to apply various combustion technologies with engines after the application of a treatment technology to this field. In this study, main injection timing, pilot injection timing, and exhaust gas recirculation (EGR) rate were selected as the experimental parameters whose effects on the emission of exhaust gases and on the fuel consumption characteristics were to be determined. In the experiment, the emission of nitrogen oxide (NOx) and Smoke, and the Torque at the same fuel consumption level, were measured. The experimental data were analyzed using the Taguchi method with an L9 orthogonal array. Additionally, analysis of variation (ANOVA) was used to confirm the influence of each parameter. Consequently, the level of each parameter was selected based on the signal-to-noise ratio data (main injection timing, 3; pilot injection timing, 3; EGR rate, 2), and the results of the Taguchi prediction were verified experimentally (error: NOx, 10.3 %; Smoke, 6.6 %; brake-specific fuel consumption (BSFC), 0.6 %).

Design of a Timing Estimator Algorithm for 2.45GHz LR-WPAM Receiver (2.45GHz LR-WPAN 수신기를 위한 Timing Estimator 알고리즘의 설계)

  • Kang Shin-Woo;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.282-290
    • /
    • 2006
  • In this paper, we propose an enhanced Timing Estimator algorithm for 2.45GHz LR-WPAN receiver. Because an expensive and highly efficient oscillator can't be used for low-cost implementation, a Timing Estimator algorithm having stable operation in the channel environment with center frequency tolerance of 80 ppm is required. To enhance the robustness to frequency offset and the stability of receiver performance, multiple delay differential filter is adopted. By utilizing the characteristic that the correlation result between the output signal of Multiple delay differential filter and reference signal is restricted on the In-phase part of the correlator output, a coherent detection scheme instead of the typical noncoherent one is adopted for Timing Estimator. The application of the coherent detection scheme is suitable for LR-WPAN receiver aimed at low-cost, low-power, and low-complexity, since it can remove performance degradation due to squaring loss of I/Q squaring operation and decrease implementation complexity. Computer simulation results show that the proposed algorithm achieved performance improvement compared with the differential detection-based noncoherent scheme by 2dB in average.

Response of Grain Yield and Milled-Rice Protein Content to Nitrogen Topdress Timing at Panicle Initiation Stage of Rice

  • Nguyen, Hung The;Kim, Min-Ho;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • Response of grain yield and milled-rice protein content to nitrogen topdress (N) timing at panicle initiation stage (PIS) is critical for quantifying real-time N requirement for target grain yield and milled-rice protein content. Two split-split-plot experiments with three replications, one in 2004 and the other in 2005, were conducted in Experimental Farm, Seoul National University, Suwon, Korea. The experiments included three N rates at tillering stage (TS), three N timing treatments at panicle initiation stage (PIS) and two rice cultivars. The N rates at TS, N timing at PIS, and rice cultivars were randomly assigned to main plot, sub plot, and sub-sub plot, respectively. Results showed that the delayed N application at PIS reduced grain yield in 2004 and increased milled-rice protein content in both years significantly at 0.05 probability level. The calculated optimum N timing at PIS from pooled data by N rates and rice cultivars in two years was at 28 days before heading (DBH). However, real-time of N timing at PIS was dependent on plant growth and N status around PIS that in turn was dependent on applied N rates at TS. The optimum N timing at PIS was at 30 DBH for no N treatments at TS while at 27 DBH for 3.6 and 7.2 kg N/10a treatments and at 27 and 29 DBH for Hwaseongbyeo and Daeanbyeo, respectively. In general, earlier applied N at PIS resulted in lower milled-rice protein content but the highest grain yield was expected to be obtained when N topdress at PIS was applied at the time when shoot N concentration started to drop below about 23 mg/g due to dilution effect after transplanting. In conclusion, the results of our experiments imply that the currently recommended N topdress time (24DBH) at PIS in Korea should be reconsidered for the higher grain yield and the better quality of rice.

A Study on the Time Delay Characteristics of Traffic Signal Phase and Timing Information Providing System (신호현시 정보 제공 시스템의 시간 지연특성 연구)

  • Bae, Jeong Kyu;Seo, Kyung Duk;Seo, Woo Chang;Seo, Dae Wha
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.48-59
    • /
    • 2022
  • A V2X system can be a candidate as a means to increase the stability of autonomous vehicles. In particular, in order to implement a Level 4 or higher autonomous driving system, the application of the V2X system is essential. Wireless communication technologies applicable to the V2X system include WAVE and C-V2X. Currently, the V2X service most used by autonomous driving systems is a service that provides signal phase and timing information and since real-time characteristic is a very important, verification of this service must be done. In this paper, we measured the time delay characteristics for providing signal phase and timing information using WAVE and LTE communication, and proposed a TOD-based signal phase and timing information generation method without using V2X communication system. To analyze the time delay characteristics, RTT (Round Trip Time) was measured as a result of the measurement. Average RTT using WAVE communication was 5.84ms and was 104.15ms with LTE communication. As a result of measuring the error between the signal phase and timing information generated based on TOD and the actual traffic light state, it was measured to be -0.284~3.784sec.

System Interface for SoG in LTPS TFT Process

  • Min, Kyung-Youl;Yoo, Chang-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1791-1794
    • /
    • 2006
  • For system-on-glass (SoG) with low-temperature poly-silicon (LTPS) thin film transistor (TFT), a new system interface architecture and timing controller are developed. With the newly developed system interface architecture, line memory can be eliminated which would take large area of SoG display panel. The system interface and timing controller are targeted for the application for 6-bit gray scale, 60-frames/s qVGA format.

  • PDF

Selection of Optimal Application Condition of Corn Waste Biochar for Improvement of Corn Growth and Soil Fertility

  • Kang, Se-Won;Kim, Seong-Heon;Park, Jong-Hwan;Seo, Dong-Cheol;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.452-461
    • /
    • 2017
  • This study was conducted to select an optimal approach to corn waste biochar (BC) application, and to evaluate the effects of combined application of BC and inorganic fertilizer (IF) on corn growth and soil chemical properties in a pot experiment. Corn growth differed with BC application timing and BC application levels. Based on the characteristics of corn growth in pot-based experiments, the selected optimal application conditions of BC were application of $500kg\;10a^{-1}$ at 20 days before sowing. Also, the chemical properties of the tested soil with BC after corn harvesting were significantly improved than those in the other treatments. In particular, soil pH and CEC regardless of application conditions were markedly increased by 0.04~0.19 units and $0.08{\sim}2.58coml_c\;kg^{-1}$ in BC treatments than without BC treatments. Additionally, combined application of BC and IF had greater effects on corn growth than single application of BC. Therefore, the results suggest using properly BC application conditions and a combination of BC and IF for effective corn cultivation in an upland field.

Atmospheric Stability Evaluation at Different Time Intervals for Determination of Aerial Spray Application Timing

  • Huang, Yanbo;Thomson, Steven J.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.337-341
    • /
    • 2016
  • Purpose: Evaluation of atmospheric conditions for proper timing of spray application is important to prevent off-target movement of crop protection materials. Susceptible crops can be damaged downwind if proper application procedure is not followed. In our previous study, hourly data indicated unfavorable conditions, primarily between evening 18:00 hrs in the evening and 6:00 hrs next morning, during clear conditions in the hot summer months in the Mississippi delta. With the requirement of timely farm operations, sub-hourly data are required to provide better guidelines for pilots, as conditions of atmospheric stability can change rapidly. Although hourly data can be interpolated to some degree, finer resolution for data acquisition of the order of 15 min would provide pilots with more accurate recommendations to match the data recording frequency of local weather stations. Methods: In the present study, temperature and wind speed data obtained at a meteorological tower were re-sampled to calculate the atmospheric stability ratio for sub-hour and hourly recommendations. High-precision evaluation of temperature inversion periods influencing atmospheric stability was made considering strength, time of occurrence, and duration of temperature inversion. Results and Discussion: The results indicated that atmospheric stability could be determined at different time intervals providing consistent recommendations to aerial applicators, thereby avoiding temperature inversion with minimal off-target drift of the sprayed liquid.

Scheduling Design and Simulation of Software Components for EPS System based on AUTOSAR (AUTOSAR기반 EPS 시스템 소프트웨어 컴포넌트의 스케줄링 설계 및 시뮬레이션)

  • Park, Gwang-Min;Kum, Dae-Hyun;Son, Byeong-Jeom;Lee, Seong-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.539-545
    • /
    • 2010
  • Through the AUTOSAR methodology, the embedded software shall become more flexible, reusable, maintainable than ever. However, it is not mentioned about specific timing constraints of software components in AUTOSAR. There are a few basic principles for mapping runnable entities. At this point, AUTOSAR software design with optimal scheduling method is one of the enabling technologies in vehicle embedded system. This paper presents an approach based on mapping runnable entities and task scheduling design method for EPS (Electric Power Steering) software components, based on AUTOSAR. In addition, the experimental results of concurrent simulation show that the proposed scheduling technique and timing synchronization in the software component design can achieve the improved torque ripple performance and it well suited for EPS application software.

Intelligent Support System for Power System Operators: Decision Making for Wash Timing of Polluted Insulators

  • Taniguchi, Tatsuro;Goto, Satoru;Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.165-168
    • /
    • 1999
  • The support or automation of various kinds of intelligent work is urged at large, integrated control centers. Given this demand, a decision making system for wash timing of polluted insulators, applying the Bayesian rule theory, has been developed in order to support maintenance work in the power system. The results of this system application revealed that exact wash timing of the insulators could be determined automatically, equivalent in precision to judgement by skilled operators, thus contributing to further work efficiency.

  • PDF