• 제목/요약/키워드: Application optimization

검색결과 2,030건 처리시간 0.029초

A Study on Place and Route for FPGA using the Time Driven Optimization

  • Yi Myoung Hee;Yi Jae Young;Tsukiyama Shuji;Laszlo Szirmay
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.70-73
    • /
    • 2004
  • We have developed an optimization algorithm based formulation for performing efficient time driven simultaneous place and route for FPGAs. Field programmable gate array (FPGAs) provide of drastically reducing the turn-around time for digital ICs, with a relatively small degradation in performance. For a variety of application specific integrated circuit application, where time-to-market is most critical and the performance requirement do not mandate a custom or semicustom approach, FPGAs are an increasingly popular alternative. This has prompted a substantial amount of specialized synthesis and layout research focused on maximizing density, minimizing delay, and minimizing design time.

  • PDF

DCBA-DEA: A Monte Carlo Simulation Optimization Approach for Predicting an Accurate Technical Efficiency in Stochastic Environment

  • Qiang, Deng;Peng, Wong Wai
    • Industrial Engineering and Management Systems
    • /
    • 제13권2호
    • /
    • pp.210-220
    • /
    • 2014
  • This article describes a 2-in-1 methodology utilizing simulation optimization technique and Data Envelopment Analysis in measuring an accurate efficiency score. Given the high level of stochastic data in real environment, a novel methodology known as Data Collection Budget Allocation-Data Envelopment Analysis (DCBA-DEA) is developed. An example of the method application is shown in banking institutions. In addition to the novel approach presented, this article provides a new insight to the application domain of efficiency measurement as well as the way one conducts efficiency study.

최적화와 기계학습 결합기법의 재무응용 (Financial Application of Integrated Optimization and Machine Learning Technique)

  • 김경재;박호연;차인준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.429-430
    • /
    • 2019
  • 본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.

  • PDF

A NEW CLASS OF NONLINEAR CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION MODELS AND ITS APPLICATION IN PORTFOLIO SELECTION

  • Malik, Maulana;Sulaiman, Ibrahim Mohammed;Mamat, Mustafa;Abas, Siti Sabariah;Sukono, Sukono
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.811-837
    • /
    • 2021
  • In this paper, we propose a new conjugate gradient method for solving unconstrained optimization models. By using exact and strong Wolfe line searches, the proposed method possesses the sufficient descent condition and global convergence properties. Numerical results show that the proposed method is efficient at small, medium, and large dimensions for the given test functions. In addition, the proposed method was applied to solve practical application problems in portfolio selection.

시변 2상 최적화 및 이의 신경회로망 학습에의 응용 (Time-Varying Two-Phase Optimization and its Application to neural Network Learning)

  • 명현;김종환
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.179-189
    • /
    • 1994
  • A two-phase neural network finds exact feasible solutions for a constrained optimization programming problem. The time-varying programming neural network is a modified steepest-gradient algorithm which solves time-varying optimization problems. In this paper, we propose a time-varying two-phase optimization neural network which incorporates the merits of the two-phase neural network and the time-varying neural network. The proposed algorithm is applied to system identification and function approximation using a multi-layer perceptron. Particularly training of a multi-layer perceptrion is regarded as a time-varying optimization problem. Our algorithm can also be applied to the case where the weights are constrained. Simulation results prove the proposed algorithm is efficient for solving various optimization problems.

  • PDF

파레토 인공생명 최적화 알고리듬의 제안 (Development of Pareto Artificial Life Optimization Algorithm)

  • 송진대;양보석
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1358-1368
    • /
    • 2006
  • This paper proposes a Pareto artificial life algorithm for solving multi-objective optimization problems. The artificial life algorithm for optimization problem with a single objective function is improved to handle Pareto optimization problem through incorporating the new method to estimate the fitness value for a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm was applied to the optimum design of a journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application were presented to give the possible solutions to a decision maker or a designer. Furthermore, the relation between linearly combined single-objective optimization problem and Pareto optimization problem has been studied.

쌍대반응표면최적화의 방법론 및 응용 : A Literature Review (Methods and Applications of Dual Response Surface Optimization : A Literature Review)

  • 이동희;정인준;김광재
    • 대한산업공학회지
    • /
    • 제39권5호
    • /
    • pp.342-350
    • /
    • 2013
  • Dual response surface optimization (DRSO), inspired by Taguchi's philosophy, attempts to optimize the process mean and variability by using response surface methodology. Researches on DRSO were extensively done in 1990's and have been matured recently. This paper reviews the existing DRSO methods from the decision making perspective. More specifically, this paper classifies the existing DRSO methods based on the optimization criterion and the timing of preference articulation. Also, some of case studies are reviewed. Extension to multiresponse optimization, triple response surface optimization, and application of data mining method are suggested as future research issues.

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.283-293
    • /
    • 2013
  • This paper deals with the applicability of a new extended layerwise optimization method for thermal buckling load optimization of laminated composite plates. The design objective is the maximization of the critical thermal buckling of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

Genetic optimization of vibrating stiffened plates

  • Marcelin, Jean Luc
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.529-541
    • /
    • 2006
  • This work gives an application of stochastic techniques for the optimization of stiffened plates in vibration. The search strategy consists of substituting, for finite element calculations in the optimization process, an approximate response from a Rayleigh-Ritz method. More precisely, the paper describes the use of a Rayleigh-Ritz method in creating function approximations for use in computationally intensive design optimization based on genetic algorithms. Two applications are presented; their deal with the optimization of stiffeners on plates by varying their positions, in order to maximize some natural frequencies, while having well defined dimensions. In other words, this work gives the fundamental idea of using a Ritz approximation to the response of a plate in vibration instead of finite element analysis.