• Title/Summary/Keyword: Application Scenario

Search Result 560, Processing Time 0.025 seconds

Spatial Simulation of Urban Expansion Area using GIS and CA Technologies (GIS-CA 기법을 이용한 도시확산 지역의 공간적 모의)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.4 s.25
    • /
    • pp.9-18
    • /
    • 2004
  • The purpose or this study is to simulate spatially the urban expansion phenomena with a cellular automata (CA) technique using GIS. A study area, Suwon city, was selected for test of model verification and application with the classified land-use maps of three data years: 1986, 1996, and 2000. The urbanized potential maps were generated with seven criteria of one geographic factor (slope of land), and six accessibility factors (time distances from city, national road, Seoul, station, and built-up boundary), considering their weighting values, which were optimized by WSM (weighted scenario method for intensity order) combined a ranking method and a AHP technique. The optimized weighting values at the urban expansion between 1986 and 1996 were applied to verify the CA model for the other expansion between 1996 and 2000. The results of model application showed that urban sprawl phenomena of the urban expansion toward rural area can be simulated spatially and temporally with several boundary conditions considering various scenarios for the criteria and parameters of the model. Ultimately, this study can contribute to reference data for land-use planning of urban fringe areas.

MPMTP-AR: Multipath Message Transport Protocol Based on Application-Level Relay

  • Liu, Shaowei;Lei, Weimin;Zhang, Wei;Song, Xiaoshi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1406-1424
    • /
    • 2017
  • Recent advancements in network infrastructures provide increased opportunities to support data delivery over multiple paths. Compared with multi-homing scenario, overlay network is regarded as an effective way to construct multiple paths between end devices without any change on the underlying network. Exploiting multipath characteristics has been explored for TCP with multi-homing device, but the corresponding exploration with overlay network has not been studied in detail yet. Motivated by improving quality of experience (QoE) for reliable data delivery, we propose a multipath message transport protocol based on application level relay (MPMTP-AR). MPMTP-AR proposes mechanisms and algorithms to support basic operations of multipath transmission. Dynamic feedback provides a foundation to distribute reasonable load to each path. Common source decrease (CSD) takes the load weight of the path with congestion into consideration to adjust congestion window. MPMTP-AR uses two-level sending buffer to ensure independence between paths and utilizes two-level receiving buffer to improve queuing performance. Finally, the MPMTP-AR is implemented on the Linux platform and evaluated by comprehensive experiments.

Fourier-Based PLL Applied for Selective Harmonic Estimation in Electric Power Systems

  • Santos, Claudio H.G.;Ferreira, Reginaldo V.;Silva, Sidelmo Magalhaes;Cardoso Filho, Braz J.
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.884-895
    • /
    • 2013
  • In this paper, the Fourier-based PLL (Phase-locked Loop) is introduced with a new structure, capable of selective harmonic detection in single and three-phase systems. The application of the FB-PLL to harmonic detection is discussed and a new model applicable to three-phase systems is introduced. An analysis of the convergence of the FB-PLL based on a linear model is presented. Simulation and experimental results are included for performance analysis and to support the theoretical development. The decomposition of an input signal in its harmonic components using the Fourier theory is based on previous knowledge of the signal fundamental frequency, which cannot be easily implemented with input signals with varying frequencies or subjected to phase-angle jumps. In this scenario, the main contribution of this paper is the association of a phase-locked loop system, with a harmonic decomposition and reconstruction method, based on the well-established Fourier theory, to allow for the tracking of the fundamental component and desired harmonics from distorted input signals with a varying frequency, amplitude and phase-angle. The application of the proposed technique in three-phase systems is supported by results obtained under unbalanced and voltage sag conditions.

Prestress and excitation force identification in a prestressed concrete box-girder bridge

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Andy
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.617-625
    • /
    • 2017
  • Prestress force identification (PFI) is crucial to maintain the safety of prestressed concrete bridges. A synergic identification method has been proposed recently by the authors that can determine the prestress force (PF) and the excitation force simultaneously in prestressed concrete beams with good accuracy. In this paper, the ability of this method in the application with prestressed concrete box-girder bridges is demonstrated. A reasonable assumption is made to capture the similarity of the dynamic behavior of the prestressed concrete box-girder bridge and a beam under a certain loading scenario, and the feasibility of this method for application in a prestressed box-girder bridge is affirmed. A comprehensive laboratory test program is conducted, and the effects of PF, excitation, measuring time and uncertainties are studied. Results show that the proposed method can predict the PF and the excitation force in a prestressed concrete box-girder accurately and has a great robustness against uncertainties.

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

  • Srikesh, G.;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.

A Comparison of Human Reliability Analysis Technique Using SMART Emergency Operating Guidelines

  • Heo, Eun Mee;Byun, Seong Nam;Park, Hong Joon;Park, Geun Ok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Objective: The purpose of this study is to select the methodology for SMR HRA which has characteristics that are different from existing nuclear power plants and digital-based plants. Background: We must assure safety to preoccupy export of technology to developing countries or countries interested in nuclear application. And we can be an advanced country in nuclear technology by securing original technology in the field of SMR such as SMART. Method: THERP, which is the most representative HRA methodology among all, and RARA, which is the latest HRA methodology. This study compared and evaluated THERP and RARA. Results: As a result of applying THERP and RARA methodologies which are based on LOCA EOG task analysis result, this research concluded that RARA has higher personal errors than THERP. Conclusion: This study needs validation for LOCA, emergency operations, normal and abnormal scenarios since HRA methodology was only focused on LOCA scenario. Application: The results of this study can apply as base line data when designing MMIS, which is the main control room of SMART, and when building a simulator.

Cross-Layer Reduction of Wireless Network Card Idle Time to Optimize Energy Consumption of Pull Thin Client Protocols

  • Simoens, Pieter;Ali, Farhan Azmat;Vankeirsbilck, Bert;Deboosere, Lien;Turck, Filip De;Dhoedt, Bart;Demeester, Piet;Torrea-Duran, Rodolfo;Perre, Liesbet Van der;Dejonghe, Antoine
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • Thin client computing trades local processing for network bandwidth consumption by offloading application logic to remote servers. User input and display updates are exchanged between client and server through a thin client protocol. On wireless devices, the thin client protocol traffic can lead to a significantly higher power consumption of the radio interface. In this article, a cross-layer framework is presented that transitions the wireless network interface card (WNIC) to the energy-conserving sleep mode when no traffic from the server is expected. The approach is validated for different wireless channel conditions, such as path loss and available bandwidth, as well as for different network roundtrip time values. Using this cross-layer algorithm for sample scenario with a remote text editor, and through experiments based on actual user traces, a reduction of the WNIC energy consumption of up to 36.82% is obtained, without degrading the application's reactivity.

Prototype Implementation of a Personalized Warning Notification System based on Geosocial Information (지오소셜 정보 기반 개인 맞춤형 경보 시스템 원형 구현)

  • Tiep, Vu Duc;Quyet, Nguyen Van;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.332-334
    • /
    • 2015
  • Nowadays a disaster event such as a building on fire, an earthquake or typhoon could occur any time, and any where. In such event, a warning notification system is a vital tool to send warning notifications to at-risk people in advance and provide them useful information to escape the dangerous area. Though some systems have been proposed such as emergency alert system using android, SMS or P2P overlay network, these works mainly focus on a reliable message distribution methods. In this work, we introduce a full prototype implementation of a personalized warning notification system based on geosocial information, which generates a personalized warning message for each user and delivers the messages through email or an android application. The system consists of four main modules: a web interface, database, a knowledge-based message generator, and message distributor. An android application is also created for user to receive warning messages on their smart phone. The prototype has been demonstrated successfully with a building-on-fire scenario.

An Architecture of IoT Information Gateway in the IMS (IMS 기반의 IoT 정보 게이트웨이 구조)

  • Wang, Qichao;Lee, Jaeoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.29-36
    • /
    • 2019
  • With the rapid development of 5G technology, more and more network functions are interconnected and more popular. In order to effectively manage emerging network concepts, it allows any device object in the real world to be connected anywhere and at any time through the integration of device object recognition, interaction and raw data collection technologies. In addition, IP Multimedia Subsystem (IMS) is an architecture framework for transmitting IP-based information to the device object which can be represented as end user. Therefore, the Internet of Things and IP Multimedia Subsystem (IoT-IMS) communication platform can provide a convenient and fast way for user or device objects to deploy new application services effectively. In particular, in order to collect and manage the device information from IoT effectively in the IoT-IMS communication platform, an IoT Information Gateway (IIG) is proposed. Through the IoT Application Service (AS) scenario, the collected device information can be easily observed and managed in a unified way.