• Title/Summary/Keyword: Application Error

Search Result 2,447, Processing Time 0.028 seconds

A Study of Methodology to Examine Organizational Root Causes through the Retrospect Error Analysis of Railroad Accident Cases

  • Ra, Doo Wan;Cha, Woo Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • Objective: This study proposes a systematic process to present the analysis methods and solutions of organizational root causes to human errors on the railroad. Background: In fact, organizational root cause such as organizational culture is an important factor in the safety concerns on human errors in the nuclear power plant, railroad and aircraft. Method: The proposed process is as follows: 1) define analysis boundary 2) select human error taxonomy 3) perform accident analysis 4) draw root causes with FGI 5) review root causes analysis with survey 6) chart analysis of root causes, and 7) propose alternatives and solutions. Results: As a result, root causes of the organizations like railroad and nuclear power plant came from the educational problems, violations, payoff system, safety culture and so forth. Conclusion: The proposed process does predict potential railroad accident through retrospect error analysis by building new human error taxonomies and problem solution. Application: This study would contribute to examination of the relationship between human error-based accidents and organizational root causes.

Error Resilient Performance Evaluation of MPEG-4 and H.264/AVC (MPEG-4 와 H.264/AVC의 에러 강인 기술 성능 평가)

  • 정봉수;황영휘;전병우;김명돈;최송인
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.203-216
    • /
    • 2004
  • Recent advances in video coding technology have resulted in rapid growth of application in mobile communication, With this explosive growth reliable transmission and error resilient technique become increasingly necessary to offer high quality multimedia service. In this paper, we present the result of our investigation on the error resilient performance evaluation of the MPEG-4 simple profile under the H.324/M and the H.264/AVC baseline under the IP packet networks. Especially, we have tested error resilient tools of MPEG-4 simple profile such as resynchronization marker insertion, data partitioning, and of H.264/AVC baseline such as the flexible macroblock ordering (FMO) scheme. The objective quality of decoded video is measured in terms of rate and PSNR under various random bit and burst error conditions.

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

Human Error Analysis Technique and Its Application to Marine Accidents

  • Na, Seong;Kim, Hong-Tae;Kim, Hye-Jin;Ha, Wook-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • The management of safety at sea is based on a set of internationally accepted regulations and codes, governing or guiding the design and operation of ships. The regulations most directly concerned with human safety and protection of the environment are, in general, agreed internationally through the International Maritime Organization(IMO). IMO has continuously dealt with safety problems and, recognized that the human element is a key factor in both safety and pollution prevention issues(IMO, 2010). This paper proposes a human error analysis methodology which is based on the human error taxonomy and theories (SHELL model, GEMS model and etc.) that were discussed in the IMO guidelines for the investigation of human factors in marine casualties and incidents. In this paper, a cognitive process model, a human error analysis technique and a marine accident causal chains focused on human factors are discussed, and towing vessel collision accidents are analyzed as a case study in order to examine the applicability of the human error analysis technique to marine accidents. Also human errors related to those towing vessel collision accidents and their underlying factors are discussed in detail.

MODELING TRANSMISSION ERRORS OF GEAR PAIRS WITH MODIFIED TEETH FOR AUTOMOTIVE TRANSMISSIONS

  • Lee, H.W.;Park, M.W.;Joo, S.H.;Park, N.G.;Bae, M.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.225-232
    • /
    • 2007
  • A tooth profile modification for loaded gears is used to avoid a tooth impact. Since a tooth profile error causes amplification of the cumbersome whine noise in automotive gear transmissions, an optimal quantity of tooth profile modifications must be obtained for good performance in the vibration sense. In this paper, a tooth profile modification curve considering profile manufacturing errors and elastic deformation of the gear tooth is formulated; in addition, transmission errors of the gear system with modified teeth are verified. The equivalent excitation due to transmission errors is formulated. For experimental evaluation of the transmission error, the transmission error for a simple gear system was measured by two rotational laser vibrometers. Finally, we perform a comparative analysis between the calculated and measured responses to the excitations due to the transmission error to verify the practicability of the application to automotive transmissions.

Effect of the Stagnation Temperature on the Normal Shock Wave

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • When the stagnation temperature increases, the specific heat does not remain constant and start to vary with this temperature. The gas is perfect, it's state equation remains always valid, except, it was called by gas calorically imperfect or gas at high temperatures. The purpose of this work is to develop a mathematical model for a normal shock wave normal at high temperature when the stagnation temperature is taken into account, less than the dissociation of the molecules as a generalisation model of perfect for constant heat specific. A study on the error given by the perfect gas model compared to our model is presented in order to find a limit of application of the perfect gas model. The application is for air.

Design and Application of a New Sliding Mode Controller with Disturbance Estimator

  • Park, Seung-Bok;Ham, Joon-Ho;Park, Jong-Sung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.94-100
    • /
    • 2002
  • The conventional sliding mode control (SMC) technique requires a priori knowledge of the upperbounds of disturbances and/or modeling uncertainties to assure robustness. This, however, may not be easy to obtain in practical situation. This paper presents a new methodology, a sliding mode control with disturbance estimator (SMCDE), which offers a robust control performance without a priori knowledge about the disturbance. The proposed technique is featured by an average value of the imposed disturbance over a certain period. A nonlinear spring-mass-damper system and a two-link robot system are adopted as illustrative application examples. Control performances such as estimation error and tracking error are compared between the proposed methodology and conventional scheme.

Fuzzy Controller Design and Its Application to MCZ Crystal Grower (단결정 실리콘 성장기를 위한 퍼지 제어기 구성 및 적용)

  • 김광대;한형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.71-71
    • /
    • 2000
  • In this paper, the fuzzy system is applied to MCZ Crystal Grower using at industrial field. The existing controller, which is PID controller, has a fixed gain and as a result of it it can not have an adaptive control function against the error or disturbance. Hence, the machine operator should always check the process status and when the error is occurred, the quality and the productivity may be decreased by each personal capability. In order to remove this drawback, a fuzzy control system which is known to be adaptive and flexible is applied to the machine. After applying the fuzzy system, and compared with the existing system, the diameter deviation and the defects were decreased. we proved the possibility of application fuzzy system to single silicon crystal grower.

  • PDF

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

High Precision Electromagnetic Momentum Positioning with Current Loop

  • ZHANG, Chao;ZHAO, Yufei;WU, Hong
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.150-154
    • /
    • 2017
  • A novel high precision spatial positioning method utilizing the electromagnetic momentum, i.e., Electromagnetic Momentum Positioning (EMP), is proposed in this paper. By measuring the momentum of the electromagnetic field around the small current loop, the relative position between the sensor and the current loop is calculated. This method is particularly suitable for the application of close-range and high-precision positioning, e.g., data gloves and medical devices in personal healthcare, etc. The simulation results show that EMP method can give a high accuracy with the positioning error less than 1 mm, which is better than the traditional magnetic positioning devices with the error greater than 1 cm. This method lays the foundation for the application of data gloves to meet the accurate positioning requirement, such as the high precision interaction in Virtual Reality (VR), Augmented Reality (AR) and personal wearable devices network.