• Title/Summary/Keyword: Applicable plant

Search Result 427, Processing Time 0.03 seconds

A Study on the Application of 22kV class Superconducting Cable in Utility Network (전력회사 계통에 22kV급 초전도 케이블 도입을 위한 적용 개소 고찰)

  • 김종율;윤재영;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.20-29
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the need of underground transmission system is increasing gradually. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS (High Temperature Superconducting) cable can carry very high current densities with strongly reduced conductor loss and allow high power transmission at reduced voltage. Therefore HTS cable can transfer more power to be moved in existing ducts, which means very large economical and environmental benefits. A development project for a 22kV class HTS cable is ongoing at a research centers, and the cable manufacturer in Korea. In this paper, we carried out investigation for application of 22kV class HTS cable in Korean utility networks. The results show that the HTS cable is applicable to replace IPB in pumping-up power plant, withdrawal line in distributed generation, withdrawal line in complex power plant, and conventional under ground cable. Finally, as the cost of HTS wire and refrigeration drops, the technical and economical potential of HTS cable is evaluated positively.

Efficacy of Wax-formulated Lures on Monitoring a Quarantine Insect Pest, Zeugodacus caudata (Diptera: Tephritidae) (왁스 제형 유인제의 검역 대상 과실파리(Zeugodacus caudata)에 대한 유인 효과)

  • Choi, Dooyeol;Kwon, Gimyon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.185-190
    • /
    • 2018
  • Monitoring exotic fruit flies is essential for quarantine procedure. Wax formulation containing fruit fly lures is relatively long-lasting in field conditions and has been applicable to monitor the fruit flies. This study was performed to extend the application of wax formulation against different fruit flies. The wax formulation containing lures was tested in Thailand, at which various exotic fruit flies inhabited. Captured flies were identified to be Bactrocera dorsalis, Zeugodacus cucurbitae, and Zeugodacus caudata by molecular diagnosis technique.

Conceptual Design of Passive Containment Cooling System for Concrete Containment

  • Lee, Seong-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.358-363
    • /
    • 1995
  • A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.

  • PDF

Effects of Plant Growth Regulators on in vitro Propagation of Echinosophora koreensis Nakai

  • Yi, Jae-Seon;Lee, Hyunseok;An, Chanhoon
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.275-281
    • /
    • 2013
  • To establish in vitro nodal culture conditions of Echinosophora koreensis Nakai, one of rare and endangered species famous for beautiful flowers in the Korean Peninsula, the influence of plant growth regulators (PGRs) on shooting and rooting from in vitro shoots was investigated. In shoot multiplication, addition of 6-benzylaminopurine (BA) to the half-strength Driver and Kuniyuki's media in the range of 2.22 to 8.88 ${\mu}M $induced 2.5 to 2.7 shoots per axillary bud; and addition of 2.27 ${\mu}M $ thidiazuron (TDZ) produced 3.2 shoots, during 4 weeks of culture, while zeatin and isopentenyl adenine (2ip) were not effective on shoot multiplication as observed from several combination treatments of BA with other PGRs. Shoots established were smaller than 2 cm in length, in most of the treatments. while in BA 8.88 ${\mu}M $ treatment more than 30% of shoots were longer than 2 cm and shorter than 4 cm. In rooting, naphthalene acetic acid (NAA) from 5.37 to 21.48 ${\mu}M $ showed the rooting rate from 40.0 to 62.5%. Indole butyric acid (IBA) addition had little effect on rooting (<10%), although some roots in IBA-containing media were longer than those in NAA. Micropropagation from axillary buds of nodular explants was applicable and promising to multiplication and conservation of Echinosophora koreensis Nakai.

Particle Separation and Flotation Efficiency by Dissolved Carbon Dioxide Flotation Process (용존이산화탄소부상(DCF) 공정의 입자분리 특성과 부상효율)

  • Kwak, Dong-Heui;Kim, Seong-Jin;Jung, Heung-Jo;Park, Yang-Kyun;Yoo, Young-Hoon;Lee, Young-Dong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • A series of laboratory experiments carried out to investigate the particle separation efficiency and flotation characteristics using $CO_2$ bubbles. The primary objective of this study was to find out the feasibility of $CO_2$ bubbles as an applicable unit of flotation process in tap-water and wastewater treatment plant. The fundamental measurements were conducted to characterize the $CO_2$ bubble from the physical viewpoint in water including bubble size distribution and rising velocity under various operational conditions. In addition, the removal efficiency of solid was experimented using the lab scale plant applied $CO_2$ bubbles, namely the dissolved carbon dioxide flotation (DCF) process. The DCF process using carbon dioxide bubble, which is an advantage as the decrease and the reuse of Green-House gas, can be a promising technology as an water treatment process. On the other hand, the further research to decrease the bubble size distribution of $CO_2$ is required to enhance the particle separation efficiency.

Analysis of Cost Estimate Method Based on Engineering 3D Model for Nuclear Power Plant Construction Project (엔지니어링 3D모델 기반 원전 건설사업비 산정방안 분석)

  • Lee, Sang-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.294-295
    • /
    • 2018
  • Nowadays, the construction industry utilizes 3D models in the designing process, on which research is being conducted to establish an automated system for project cost estimation in connection with information related to construction such as material unit costs and wages, beyond the level of design interference review and construction quantity estimation. In this process, the project cost is estimated in connection with unit price data after takeoff the quantity based on the 3D model attributes and data types. A way to reduce cost and risk would be first developing prototypes of some of essential buildings and works, comparing and validating the outcomes, and then extending to the whole scope, because estimates differ on the basis of the scope and level of 3D design models as well as the data accuracy. This study analyzes case studies of project cost estimation by computing the quantity on the basis of 3D model in the construction industry and explores methodologies and management measures applicable for estimating nuclear power plant construction project costs.

  • PDF

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Simulation of a Six-zone Simulated Moving Bed Chromatographic Process for NPK Fertilizer Production (NPK 비료 생산을 위한 6구역 모사이동층의 공정모사)

  • Lim, Youngil;Lee, Aran
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Using strong cation exchange simulated moving bed (SMB) chromatography, a nitrogen-phosphate-potassium (NPK) fertilizer is produced in a cost-effective manner. The SMB process operated in a non-traditional way is divided into production and regeneration sections for exclusion of undesirable ions, and composed of six zones including two wash-water zones. This paper addresses modeling and simulation studies on the ion-exchange SMB process, comparing simulation results with experimental data obtained both from a pilot plant and an industrial plant. The simulation results show a good agreement with in situ experimental data obtained in the two plants. The model equation validated by the experiments will be applicable for optimization problems to obtain optimum operating conditions of the process.

A Study on the Design of Liquid Flow Control Valves for the Plants and Ships (플랜트 및 선박의 액체용 유량제어밸브 설계에 관한 연구(I))

  • 최순호;박천태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 1995
  • The fluid flow for a energy transfer is essential for the design and operation of power plants, petrochemical plants and ships including a process. When the operating conditions of a plant are changed or any transitional event occured, the flow controls of a fluid must be performed to follow the new operating state or mitigate the results of a event. Generally these flow controls to accommodate the new operating state of a plant are made by the use of various valves. The refore the design of valves and the related techniques are very important to the system and component designs. However the system and component design are not familiar with the practical theory of the valve since the derivative procedures of the flow equations in a valve are difficult and it is not easy to found the theoretical foundamentals and informations about the design of a valve from the present references. In this study the flow equations applicable to a valve for liquid are theoretically derived in detail. And the definition of valve reynolds number and its boundary values between the tubulent and laminar flow is described compared with the values of a circular pipe flow.

  • PDF

Response of a Miscanthus sinensis Grassland in an Early Successional Old-Field to Fertilization

  • Song, Jong-Suk
    • Journal of Plant Biology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • The effects of fetilization on the structure and function of an early successional Miscanthus sinensis grassland were investigated in an old-field ecosystem at Honjo city, Saitama Prefecture, Japan from 1981 to 1982. Compared to control plot, life form composition of treatment plot was characterized by a decrease of phanerophytes and an increase of hemicryptophytes. Fertilization had a beneficial effect on the growth in aboveground phytomass of M. sinensis, the dominant species. However, it did not cause a change in the total number of stems of M. sinensis. Annual increment of patch diameter of M. sinensis was estimated to be 6-8 cm on an average and there was no significant differecne in the growth rate of patch size between fertilized and nonfertilized plots. To estimate the aboveground phytomass of M. sinensis, several non-destructive parameters were examined. As a result, the patch size showed a high correlation with aboveground phytomass. Thus the patch size was suggested to be most applicable to its estimation. Diversity indices based on phytomass data of component species were increased slightly by fertilizatin, because relative dominance of some other species, especially of Artemisia princeps increased, while that of M. sinensis decreased. Fertilizer application resulted in a decrease in the total number of species.

  • PDF