• Title/Summary/Keyword: Applicability estimation

Search Result 599, Processing Time 0.025 seconds

A Round Robin Study of Solid Content Test and Applicability Estimation of FT-IR Analysis for Chemical Admixtures (다자비교시험을 통한 화학혼화제 고형분량 시험법의 신뢰성 및 FT-IR 분석에 대한 효용성 평가)

  • Kim, Jin-Cheol;Yoo, Hyeok-Jin;Kim, Hong-Sam;Park, Ko-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.695-703
    • /
    • 2015
  • Acceptance criteria for chemical admixtures of cement concrete were investigated in domestic and international specifications. The reliability was verified for solid content test method of chemical admixture examined statistical analysis by round robin test. The applicability of FT-IR spectroscopy for qualitative measurement of multi-compound chemical admixtures verified. From solid content experimental results, outlier analysed using Cochran, Grubbs and Dickson's Q test. Repeatability and reproducibility standard deviation for solid content results showed 0.25 and 0.098% respectively according to KS A ISO 5725-2 procedure, it can be confirmed reliability of test methods. FT-IR spectrum of liquefied or oven-dried chemical admixtures condition showed big differences. It is needed that the FT-IR analysis is performed on dry material. However there's no difference with the applicability of FT-IR spectroscopy for multi-compound chemical admixtures. So the utility of method analysis could not identify.

Satellite Rainfall Monitoring: Recent Progress and Its Potential Applicability (인공위성 강우모니터링: 최근 동향 및 활용 방안)

  • Kim Seong-Joon;Shin Sa-Chul;Suh Ae-Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.142-150
    • /
    • 1999
  • During the past three decades after the first attempt to use satellite imagery or derived cloud products for rainfall estimation, much is known and understood concerning the scope and difficulties of satellite rainfall monitoring. After a brief general introduction this paper reviews recent progress in this field with special reference to improvement of algorithms, inter-comparison projects, integrative use of data from different sources, increasing lengths of data records and derived products, and interpretability of rainfall results. Also the paradigm of TRMM (Tropical Rainfall Measuring Mission) which is the first space mission(1997) dedicated to measuring tropical and subtropical rainfall though microwave and visible/infrared sensors, including the first spaceborne rain radar was introduced, and the potential applicability to the field of agriculture and water resources by combining satellite imagery is described.

  • PDF

Development of the Hydraulic Performance Graph Model and its Application (수리거동곡선 모형의 개발 및 적용)

  • Seo, Yongwon;Seo, Il Won;Shin, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1373-1382
    • /
    • 2014
  • This paper presents a hydraulic performance graph model in which the flow carrying capacity of a channel system was determined by accounting the interacting backwater effect among channel reaches and incoming lateral flow. The method utilizes hydraulic performance graphs (HPGs), and the method is applied to a natural channel Nakdong River to examine its applicability. This research shows that estimation results using HPG are close to records from the stage station and the results from a widely-accepted model, HEC-RAS. Assuming that a water level gage site is ungaged, water level estimations by HPGs compared with observation show that with a flood event, the HPGs underestimate in the water level ascension phase, but in the recession phase they overestimate results. The accuracy of estimation with HPGs was greatly improved by considering the time difference of flooding between the observation and estimation locations.

Reliability Evaluation of Compressive Strength of Reinforced Concrete Members (철근 콘크리트 구조 부재의 압축강도 추정 신뢰도 평가)

  • Hong, Seong-Uk;Park, Chan-Woo;Lee, Yong-Taeg;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.132-140
    • /
    • 2019
  • In this study, a specimen composed of columns, walls, beams, and slabs was fabricated to investigate the estimated reliability using nondestructive test method for the location of structural members of reinforced concrete single layer structures. And for accurate analysis in the comparison process with the existing estimation formula, we try to analyze the reliability through statistical approach by using error rate comparison and Confidence interval estimation. As a result, The average error rate of the core test was 18.8% compared with the result of estimating the compressive strength using the ultrasonic pulse velocity method. The average error rate of the core test results compared with the result of estimating the compressive strength using the rebound hardness method was 20.1%, confirming the field applicability. it is judged that the reliability of the compressive strength estimation can be derived from the wall member to make a quick and efficient structure safety diagnosis using the ultrasonic pulse velocity method. In addition, it is judged that the reliability of the compressive strength estimation can be derived from the beam member to make a quick and efficient structure safety diagnosis using the rebound hardness method.

The Verification of Application of Distributed Runoff Model According to Estimation Methods for the Missing Rainfall Data (결측강우보완방법에 따른 분포형 유출모형의 적용성 검증)

  • Choi, Yong-Joon;Kim, Yeon-Su;Lee, Gi-Ha;Kim, Joo-Cheol
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1375-1384
    • /
    • 2010
  • The purpose of this research is to understand the change of runoff characteristics by estimated spatial rainfall. Therefore, this paper largely composed of two parts. First, we compared the simulated result according to estimation method, ID(Inverse Distance Method, ID2(Inverse Square Distance Method), and Kr(General Covariance Kriging Method), after letting miss rainfall data to the observed data. Second, we reviewed the runoff characteristics of the distributed runoff model according to the estimated spatial rainfall. On the basis of Yuseong water level station, we select the target basin as Gabchun watershed. We assumed 1 point or 2 point of the 6 rainfall gauge stations in watershed were missed. We applied the spatial rainfall distributed by Kr to Hy-GIS GRM, distributed runoff model. When 1 point rainfall data is missed, Kr is superior to others in point rainfall estimation and runoff estimation of Hy-GIS GRM. However, in case rainfall data of 2 points is missed, all of three methods did not give suitable result for them. In conclusion, Kr showed better applicability than other estimated methods if rainfall's data less than 2 points is missed.

Monthly Sediment Yield Estimation Based on Watershed-scale Application of ArcSATEEC with Correction Factor (보정계수 적용을 통한 유역에 대한 ArcSATEEC의 월별 토양유실량 추정 방안 연구)

  • Kim, Eun Seok;Lee, Hanyong;Yang, Jae E;Lim, Kyoung Jae;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.52-64
    • /
    • 2020
  • The universal soil loss equation (USLE), a model for estimating the potential soil loss, has been used not only in research areas but also in establishing national policies in South Korea. Despite its wide applicability, USLE cannot adequately address the effect of seasonal variances. To overcome this limit, the ArcGIS-based Sediment Assessment Tool for Effective Erosion (ArcSATEEC) has been developed as an alternative model. Although the field-scale (< 100 ㎡) application of this model produced reliable estimation results, it is still challenging to validate accuracy of the model estimation because it only estimates potential soil losses, not the actual sediment yield. Therefore, in this study, a method for estimating actual soil loss based on the ArcSATEEC model was suggested. The model was applied to eight watersheds in South Korea to estimate sediment yields. Correction factor was introduced for each watershed, and the estimated sediment yield was compared with that of the estimated yield by LOAD ESTimator (LOADEST). Sediment yield estimation for all watersheds exhibited reliable results, and the validity of the proposed correction factor was confirmed, suggesting the correction factor needs to be considered in estimating actual soil loss.

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

A Fast Motion Estimation Algorithm with Adjustable Searching Area (적응 탐색 영역을 가지는 고속 움직임 추정 알고리즘)

  • Jeong, Seong-Gyu;Jo, Gyeong-Rok;Jeong, Cha-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.966-974
    • /
    • 1999
  • 완전 탐색 블록 정합 알고리즘(FBMA)은 다양한 움직임 추정 알고리즘 중 최상의 움직임 추정을 할 수 있으나, 방대한 계산량이 실시간 처리의 적용에 장애 요소이다. 본 논문에서는 완전 탐색 블록 정합 알고리즘에 비해 더 낮은 계산량과 유사한 화질을 가지는 새로운 고속 움직임 추정 알고리즘을 제안한다. 제안한 방법에서는 공간적인 상관성을 이용함으로써 적절한 탐색 영역의 크기를 예측할 수 있다. 현재 블록의 움직임 추정을 위하여 이웃 블록이 가지고 있는 움직임과 탐색 영역의 크기를 이용하여 현재 블록의 탐색 영역을 적응적으로 변화시키는 방법이다. 이 예측값으로 현재 블록의 탐색 영역 크기를 결정한 후, FBMA와 같이 이 영역 안의 모든 화소점들에 대하여 현재 블록을 정합하여 움직임 벡터를 추정한다. 컴퓨터 모의 실험 결과 계산량 측면에서 제안 방법이 완전 탐색 블록 정합 알고리즘보다 50%정도 감소하였으며, PSNR 측면에서는 0.08dB에서 1.29dB 정도 감소하는 좋은 결과를 얻었다.Abstract Full search block-matching algorithm (FBMA) was shown to be able to produce the best motion compensated images among various motion estimation algorithms. However, huge computational load inhibits its applicability in real applications. A new motion estimation algorithm with lower computational complexity and good image quality when compared to the FBMA will be presented in this paper. In the proposed method, The appropriate search area can be predicted by using the temporal correlation between neighbouring blocks. For motion estimation of the current block, it is the method changing adjustably search area of current block by using motion and search area size of the neighbouring block. After deciding search area size of the current block with this predicted value, we estimate motion vector that matching current block like the FBMA for every pixel in this area. By the computer simulation the computation amount of the proposed method can be greatly decreased about 50% than that of the FBMA and the good result of the PSNR can be attained.

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF