• Title/Summary/Keyword: Apple leaves

Search Result 121, Processing Time 0.033 seconds

Studies on the White rot and Blister Canker in Apple Trees caused by Botryosphaeria berengeriana (사과나무의 겹무늬병(윤문병) 및 사마귀병 (우피병)의 병원균과 병원성에 관한 연구)

  • Lee Du Hyung;Yang Jang Suck
    • Korean journal of applied entomology
    • /
    • v.23 no.2 s.59
    • /
    • pp.82-88
    • /
    • 1984
  • Fruit rot and blister canker, a disease of apple occurring severely in Korea has been studied for correct identification of the syndrome In fruit and apple trees. Among the fungi isolated from blister cankers, rough barks or fruits showing rotting of 7 different host species were Botryosphaeria berengeriana (pycnidial stage. Dethiorella mali), Penicillium expansum and Alternaria sp. from apple rots and Phomopsis sp. from pear fruit rots. The most dominant isolates were B. berengeriana. Ten isolates of D. mali were grouped in to two conidial types based up mycelial growth rate, growth habits and mycelial coloration on PDA. None of 10 isolates was chromogenic. Pycnidia in apple stems, stromatic, dark brown, globose or subglobose and the measuring were $103.5-287.5{\mu}\times92.0-287.5\mu$. The pycnidia contained hyaline, nonseptate, fusiform conidia. The sizes of pycnidiospore of isolates obtained from apple twig were $4.3-7.2{\mu}\times20.0-31.5{\mu}(average\;5.9\times25.4\mu)$. Some conidia of this fungus from apple, pear, peach and ornamental cherry showed 1-,2-,3-septate before or during germination. Microconidia were observed in pycnidia on PDA and fruit lesion of inoculated host. Symptoms on leaves and fruits were contoured brown spots when inoculated. Wart-like protuberance were formed on the surface of apple and pear. Canker appeared on branches of peach and ornamental cherry inoculated.

  • PDF

Comparison of Pesticide Residue Amounts in Apple Trees Applied by Different Sprayers and Spray Volumes (살포기 종류별 살포물량별 사과 중 농약 잔류량의 비교)

  • Moon, Seong-Hwan;Kwon, Hyeyoung;Hong, Su-Myeong;Kim, Sang-Su;Son, Kyung-Ae;Lim, Chi-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.264-270
    • /
    • 2016
  • This study was conducted to compare of the pesticide residue amounts in fruit trees applied by different sprayers and spray volumes. Apple tree was used as a sample tree, and speed sprayer, power sprayer and knapsack motorized sprayer were tested. For similar sprayer and spray volume, the concentration of fluquinconazole and flusilazole in apple leaves were obtained respectively, for speed sprayer 8.33 and 2.15 mg/kg, for power sprayer 4.56 and 1.10 mg/kg, and for knapsack 4.55 and 1.12 mg/kg. The results showed that the treatment using speed sprayer had highest efficiency. The pesticide residues in apple leaves sprayed by 3 different spray volumes (560, 336 and 230 L/10a) using speed sprayer were 10.76 mg/kg, 8.32 mg/kg, 6.04 mg/kg on fluqinconazle and 3.04 mg/kg, 2.14 mg/kg and 1.47 mg/kg on flusilazole, respectively, indicating that the higher the volume, the higher the residues. The results from this study can be used as scientific basis for evaluating the field trial data for pesticide registration and the spray volume setting for fruit trees in Korea.

Observation on the Fauna of Arthropods form Apple Orchards in Winter in Kyongbuk Province (경북지방 사과원의 동계 절지동물(Arthropoda)상)

  • 이영인;권기면;이순원;류하경;류언하
    • Korean journal of applied entomology
    • /
    • v.36 no.3
    • /
    • pp.231-236
    • /
    • 1997
  • Arthropods of 3 Classes, 19 Orders and 58 Families were collected by the enticing band from the trunk of apple trees in winter in Kyongbuk province. The two spotted spider mite, Tetranychu.v urricae Koch, was dominant species with 53.0%, followed by Eriosomtr lanigerutn Hausmann. 16.7%. Oribatida 13.3% and Collembola 9.3%. Of those, herbivores were majority, followed by some decomposers and few natural enemies. Arthropods of 2 Classes, 12 Orders and 17 Families were observed from the fallen leaves. T. urric,ae 63.1% was dominant, followed by Collembola 13.797~ and other Arthropods. While 2 Classes, 9 Orders and 18 Families were investigated from the soil of apple orchards. They were collembola 37.9%. Oribatida 34.476, T. urticae Ih.l% and others in few numbers. Decomposers were majority, followed by herbivores and few natural enemies.

  • PDF

An Identity Based Pharmacognostical Profile of folium Annona squamosa

  • Kumar, C. Dinesh;Rajendran, K.;Lobo, Richard;Shirwaikar, Annie
    • Natural Product Sciences
    • /
    • v.11 no.4
    • /
    • pp.213-219
    • /
    • 2005
  • The leaves of Annona squamosa Linn. (Annonaceae), commonly called as custard apple, are popularly used for the treatment of diabetes by various tribes in India. The leaves are also used for their powerful insecticidal activity, especially for destroying lice. This paper present a detailed pharmacognostical study of the crude drug folium Annona squamosa. The samples were studied using procedures of light, confocal microscopy, WHO recommended physico-chemical determinations and authentic phytochemical procedures. The physicochemical, morphological and histological parameters presented in this paper may be proposed as parameters to establish the authenticity of Annona squamosa leaf and may possibly help to differentiate the drug from its adulterants.

Plant Disease Identification using Deep Neural Networks

  • Mukherjee, Subham;Kumar, Pradeep;Saini, Rajkumar;Roy, Partha Pratim;Dogra, Debi Prosad;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.233-238
    • /
    • 2017
  • Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.

Mimicking the pattern formation of fruits and leaves using gel materials

  • Chen, Li;Zhang, Yang;Swaddiwudhipong, Somsak;Liu, Zishun
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.575-588
    • /
    • 2014
  • Gel materials have recently gained more attention due to its unique capability of large and reversible volumetric changes. This study explores the possibility of mimicking the pattern formation of certain natural fruits during their growing process and leaves during drying processes through the swelling and de-swelling of gel materials. This will hopefully provide certain technical explanations on the morphology of fruits and plants. We adopt the inhomogeneous field gel theory to predict the deformation configurations of gel structures to describe the morphology of natural fruits and plants. The growing processes of apple and capsicum are simulated by imposing appropriate boundary conditions and field loading via varying the chemical potential from their immature to mature stages. The drying processes of three types of leaves with different vein structures are also investigated. The simulations lead to promising results and demonstrate that pattern formation of fruits and plants may be described from mechanical perspective by the behavior of gel materials based on the inhomogeneous field theory.

Residual Toxicity of Bifenthrin and Imidacloprid to Honeybee by Foliage Treatment (Bifenthrin과 Imidacloprid의 작물잎에서의 잔류량과 꿀벌에 대한 독성)

  • Cho, Kyung-Won;Park, Hyun-Ju;Bae, Chul-Han;Kim, Yeon-Sik;Shin, Dong-Chan;Lee, Seung-Yeol;Lee, Suk-Hee;Jung, Chang-Kook;Park, Yeon-Ki;Kim, Byung-Seok;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.226-234
    • /
    • 2010
  • Foliage residue toxicity experiment was performed against honeybee (Apis mellifera) with bifenthrin, a synthetic pyrethroid insecticide with strong acute contact toxicity and imidacloprid, a neo-nicotinoid insecticide with strong acute oral toxicity to know the honeybee toxicity at the residue level on the leaves of alfalfa and apple. Also, the formulation differences to honeybee toxicity were investigated with WP (2%) and EC (1%) of bifenthrin and WP (10%) and SL (4%) of imidacloprid. Generally, foliage residual toxicity of honeybee and residual amounts of tested insecticides was higher in alfalfa leaves with large leaf area per unit weight than in apple leaves. While on the other hand, the only bifenthrin WP treatment showed higher honeybee toxicity on apple leaves than alfalfa. Although imidacloprid showed higher residue amounts ranged $4.9{\sim}25.4\;mg{\cdot}kg^{-1}$ than bifenthrin ranged $0.6{\sim}12.7\;mg{\cdot}kg^{-1}$ on the leaves, the residual toxicity to honeybee was lower than bifenthrin because of its strong penetration character. In conclusion, the residual toxicity of insecticide to honeybee could be affected by the contact and vaporized toxicity of chemical, the residual amounts on the surface of leaves, and the leaf area per unit weight and formulation differences.

Effect of Root Zone Temperature on the Growth and the Leaf Mineral Contents of Apple(Malus domestica Borkh) Trees (근권(根圈) 온도환경(溫度環境)이 사과나무의 생육(生育) 및 엽중(葉中) 무기성분함량(無機成分含量)에 미치는 영향)

  • Park, Jin-Myeon;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.378-384
    • /
    • 1996
  • This study was conducted to investigate the influence of root zone temperature on the growth of shoot and root and the mineral contents in leaf of 'Fuji/M26' apple tree. Shoot growth and enlargement of trunk girth increased linearly with increasing root zone temperature. Fresh and dry weight of root reached maximum at $35^{\circ}C$. Water content of root increased with rising root zone temperature. The chlorophyll content of leaves showed insignificant difference with root zone temperature. Leaf water potential was high at $35^{\circ}C$ at 15 day after treatment but 60 day after treatment this was decreased. The nitrogen content of the leaves was not different by root zone temperature whereas the phosphorus content of the leaves was increased at $30^{\circ}C$ in 1993 and at $25^{\circ}C$ in 1994. The potassium content of the leaves reached a maximum at $30^{\circ}C$ in 1993 and $25^{\circ}C$ in 1994. In 1994 the calcium content of the leaves was increased with rising root zone temperature and with lengthening duration of treatment but no such differences were found in 1993. The magnesium content of the leaves was highest at $25^{\circ}C$ in 1993 and at $20^{\circ}C$ in 1994. The nitrogen and potassium content of the roots were increased linearly with root zone temperature in 1993 and 1994 and the magnesium and phosphorus content of the roots were high at $35^{\circ}C$ in 1994 but no such differences were found in the calcium content of the roots.

  • PDF

Effect of Mineral Nutrient Contents and Growth on the Damages of Organic Apple Trees (사과 유기재배 시 무기성분 함량과 수체생장과 피해에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.587-602
    • /
    • 2017
  • Correlations of soil and leaf nutrients and growth of young 'Enterprise' apple (Malus ${\times}$ domestica Borkh.) trees were analyzed with tree damage, such as Japanese beetle (JB; Popillia japonica Newman)-damaged leaves, vole damage to trunk, tree mortality, and weed density in a certified organic orchard in warm and humid environment of Southern USA. Interaction treatments of four mulch and three fertilizers were applied around trees as follows: mow-and-blow (MB), shredded paper (SP), wood chips (WC), and green compost (GC) as a mulch, with no fertilizer (NF), poultry litter (PL), and commercial organic fertilizer (CF) as a fertilizer applied in April. Vole damage to trunk and weed density were little correlated with mineral nutrients and tree growth. JB-damaged leaves were highly stimulated to 26.5% in GC-treated plots while tree mortality were increased by MB treatments. Biomass production per tree was approximately 3,700 g on the WC- and GC-treated plots, which was two times higher than those values observed on the other two mulch plots. JB-damaged leaves tended to get worse when nutrients in soil and leaf increased through the correlation analysis, with a strong positive relationship ($r^2=0.585$) observed between JB-damaged leaves and trunk cross sectional area, a vegetative indicator. Tree mortality was more negatively associated with nutrient contents and growth of trees than those of soil nutrients. Wood chips was considered for a local organic mulch materials to increase organic matter contents and to produce healthy young trees in Southern USA, with control insect, such as beetle, and vole density in an orchard habitat.

Production of Host-specific Toxin by Alternaria mali and its Biological Activity (사과점무늬낙엽병균(Alternaria mali)이 생성(生成)하는 기주특이적(寄主特異的) 독소(毒素)와 그의 생물활성(生物活性))

  • Yu, Seung-Hun;Shim, Hyeong-Kwon;Park, Jong-Seong
    • Korean journal of applied entomology
    • /
    • v.26 no.3 s.72
    • /
    • pp.171-178
    • /
    • 1987
  • Pathogenic isolates of Alternaria mali produced host-specific toxin(AM-toxin) in liquid culture. The toxin was also released by germinating spores of the fungus. The physiological event of apple leaves induced by germinating spores was an increased loss of electrolytes from susceptible leaves. This reaction was evident soon after spore inoculation, indicating that the leakage was caused by AM-toxin from germinating spores. Typical symptoms were developed only in susceptible leaves of apple within 48hr after inoculation with pathogenic spores. Similar symptoms occurred on susceptible leaves when non-pathogenic isolates plus AM-toxin were used.

  • PDF