DOI QR코드

DOI QR Code

Effect of Mineral Nutrient Contents and Growth on the Damages of Organic Apple Trees

사과 유기재배 시 무기성분 함량과 수체생장과 피해에 미치는 영향

  • 최현석 (대구가톨릭대학교 원예학과) ;
  • 정석규 (대구가톨릭대학교 원예학과)
  • Received : 2017.04.27
  • Accepted : 2017.08.01
  • Published : 2017.08.31

Abstract

Correlations of soil and leaf nutrients and growth of young 'Enterprise' apple (Malus ${\times}$ domestica Borkh.) trees were analyzed with tree damage, such as Japanese beetle (JB; Popillia japonica Newman)-damaged leaves, vole damage to trunk, tree mortality, and weed density in a certified organic orchard in warm and humid environment of Southern USA. Interaction treatments of four mulch and three fertilizers were applied around trees as follows: mow-and-blow (MB), shredded paper (SP), wood chips (WC), and green compost (GC) as a mulch, with no fertilizer (NF), poultry litter (PL), and commercial organic fertilizer (CF) as a fertilizer applied in April. Vole damage to trunk and weed density were little correlated with mineral nutrients and tree growth. JB-damaged leaves were highly stimulated to 26.5% in GC-treated plots while tree mortality were increased by MB treatments. Biomass production per tree was approximately 3,700 g on the WC- and GC-treated plots, which was two times higher than those values observed on the other two mulch plots. JB-damaged leaves tended to get worse when nutrients in soil and leaf increased through the correlation analysis, with a strong positive relationship ($r^2=0.585$) observed between JB-damaged leaves and trunk cross sectional area, a vegetative indicator. Tree mortality was more negatively associated with nutrient contents and growth of trees than those of soil nutrients. Wood chips was considered for a local organic mulch materials to increase organic matter contents and to produce healthy young trees in Southern USA, with control insect, such as beetle, and vole density in an orchard habitat.

온난다습 한 기후대의 미국 남부지방에서 2008년에 유기인증을 받은 '엔터프라이즈' 사과나무(Malus${\times}$domestica Borkh.)를 대상으로 수체피해[왜콩풍뎅이(Popillia japonica Newman), 설치류, 고사율, 잡초밀도]에 대한 잎과 토양의 무기성분 및 수체생장과의 상관관계를 분석하였다. 과원은 유기질 멀칭 4종류와 비료 3종류를 복합으로 처리하였고, 멀칭은 초생, 종이, 우드칩, 식물성퇴비를 포함하였고, 비료는 무비료, 계분, 상업용 유기질비료를 매년 4월에 수체 주위에 시용하였다. 수체피해인 설치류와 잡초밀도는 무기성분이나 수체생장과는 별다른 상관관계가 관찰되지 않았다. 왜콩풍뎅이에 의한 잎 피해는 식물성퇴비 멀칭구에서 높았고(26.5%), 고사율은 초생멀칭구에서 가장 높았다. 주당 바이오매스 생산량은 우드칩과 식물성퇴비 멀칭구에서 약 3,700 g으로 나머지 처리보다 2배 이상 높게 나타났다. 상관관계분석을 통한 잎의 왜콩풍뎅이 피해율은 토양과 잎의 무기성분이 증가하면 심해지는 경향을 보였고, 영양생장 지표인 주간 단면적과 강한 정의 상관관계($r^2=0.585$)가 관찰되었다. 수체 고사율은 토양 내 무기성분보다는 수체의 무기성분 함량과 수체생장과 부의 상관관계가 관찰되었다. 이에 미국 남부지방 과원에서 시용된 우드칩은 유기물함량을 증가시키고 유목의 건전성을 확보하는 동시에 토양 내의 풍뎅이류 등의 해충과 설치류의 피해 정도를 최소화할 수 있는 지역 맞춤형 피복자재로 판단되었다.

Keywords

References

  1. Allsopp, P. G., M. G. Klein, and E. L. McCoy. 1992. Effect of soil moisture and soil texture on oviposition by Japanese beetle and rose chafer (Coleoptera: Scarabaeidae). J. Econ. Entomol. 85: 2194-2200. https://doi.org/10.1093/jee/85.6.2194
  2. Byers, R. E. 1984. Control and management of vertebrate pests in deciduous orchards of the eastern United States. Hort. Rev. 6: 253-285.
  3. Chalker-Scott, L. 2007. Impact of mulches on landscape plants and the environment - a review. J. Environ. Hortic. 25: 239-249.
  4. Choi, H. S., C. R. Rom, and M. Gu. 2011. Effects of different organic apple production systems on seasonal nutrient variations of soil and leaf. Sci. Hortic. 129: 9-17. https://doi.org/10.1016/j.scienta.2011.02.009
  5. Choi, S. T., S. M. Kang, D. S. Park, W. D. Song, and K. K. Seo. 2002. Thinning effect on fruit characteristics and reserve accumulation of persimmon tress defoliated in early Autumn. J. Kor. Soc. Hort. Sci. 43: 660-665.
  6. Faust, M. 1989. Physiology of temperate zone fruit trees. A Wiley-InterScience Publication, USA. pp. 53-132.
  7. Hogue, E. J. and G. H. Neilsen. 1987. Orchard floor vegetation management. Hort. Rev. 9: 377-430.
  8. Kim, B. S., K. C. Cho, B. K. Yun, S. K. Jung, H. S. Choi, and J. H. Han. 2015. Growth of 'Wonhwang' pear trees and regrowth rates of stem cuttings in vitro as affected by time and degree of defoliation. Korean J. Organic Agri. 23: 267-280.
  9. Lloyd, J. and D. Firth. 1990. Effect of defoliation time on depth of dormancy and bloom time for low chill peaches. HortScience 25: 1575-1578.
  10. Lotter, D. W. 2003. Organic agriculture. J. Sustainable Agric. 21: 59-128. https://doi.org/10.1300/J064v21n04_06
  11. Mamgain, S., H. S. Verma, and J. Kumar. 1998. Relationship between fruit yield, and foliar and soil nutrient status in apple. Indian J. Hort. 55: 226-231.
  12. McAfee, J. and C. R. Rom. 2009. Ground cover management and nutrient source affect weed density, vole damage, and survival during establishment of an organic apple orchard. HortScience 44: 1114 (abstract).
  13. Mehlich, A. 1984. Mehlich 3 soil extractant: A modification of Mehlich 2 extractant, Commun. Soil Sci. Plant Anal. 15: 1409-1416. https://doi.org/10.1080/00103628409367568
  14. Merwin, I. A., J. A. Ray, and P. D. Curtis. 1999. Orchard ground cover management systems affect meadow vole populations and damage to apple trees. HortScience 34: 271-274.
  15. Neilsen, G. H. and T. Edwards. 1982. Relationships between Ca Mg, and K in soil, leaf, and fruits of Okanagan apple orchards. Can. J. Soil Sci. 62: 365-374. https://doi.org/10.4141/cjss82-040
  16. Park, S. J. 2002. Effect of different degrees of defoliation on fruit quality, reserve accumulation and early growth of young Fuyu persimmon. Kor. J. Hort. Sci. Technol. 20: 110-113.
  17. Potter, D. A. and D. W. Held. 2002. Biology and management of the Japanese beetle. Annu. Rev. Entomol. 47: 175-205. https://doi.org/10.1146/annurev.ento.47.091201.145153
  18. Richardson, M. D., D. E. Karcher, and L. C. Purcell. 2001. Quantifying turfgrass cover using digital image analysis. Crop Sci. 41: 1884-1888. https://doi.org/10.2135/cropsci2001.1884
  19. Schulte, E. E. and B. G. Hopkins. 1996. Soil organic matter: Analysis and interpretation. Soil Science Society of America Journal Publication, USA. pp. 21-31.
  20. Szendrei, Z., N. Mallampalli, and R. Isaacs. 2005. Effect of tillage on abundance of Japanese beetle, Popillia japonica Newman (Col., Scarabaeidae), larvae and adults in highbush blueberry fields. J. Appl. Entomol. 129: 258-264. https://doi.org/10.1111/j.1439-0418.2005.00961.x
  21. Westwood, M. N. 1993. Temperate-zone pomology physiology and culture. 3rd Edition. Timber Press Inc, USA. pp. 275-299.