• 제목/요약/키워드: Apoptotic related gene expression

검색결과 94건 처리시간 0.028초

Expression and Preliminary Functional Profiling of the let-7 Family during Porcine Ovary Follicle Atresia

  • Cao, Rui;Wu, Wang Jun;Zhou, Xiao Long;Xiao, Peng;Wang, Yi;Liu, Hong Lin
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.304-311
    • /
    • 2015
  • Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.

S100A4 Gene is Crucial for Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice

  • Zhang, Yin-Hua;Ma, De-Qiang;Ding, De-Ping;Li, Juan;Chen, Lin-Li;Ao, Kang-Jian;Tian, You-You
    • Yonsei Medical Journal
    • /
    • 제59권9호
    • /
    • pp.1064-1071
    • /
    • 2018
  • Purpose: To explore the influence of S100 calcium binding protein A4 (S100A4) knockout (KO) on methionine-choline-deficient (MCD) diet-induced non-alcoholic fatty liver disease (NAFLD) in mice. Materials and Methods: S100A4 KO mice (n=20) and their wild-type (WT) counterparts (n=20) were randomly divided into KO/MCD, Ko/methionine-choline-sufficient (MCS), WT/MCD, and WT/MCS groups. After 8 weeks of feeding, blood lipid and liver function-related indexes were measured. HE, Oil Red O, and Masson stainings were used to observe the changes of liver histopathology. Additionally, expressions of S100A4 and proinflammatory and profibrogenic cytokines were detected by qRT-PCR and Western blot, while hepatocyte apoptosis was revealed by TUNEL staining. Results: Serum levels of aminotransferase, aspartate aminotransferase, triglyceride, and total cholesterol in mice were increased after 8-week MCD feeding, and hepatocytes performed varying balloon-like changes with increased inflammatory cell infiltration and collagen fibers; however, these effects were improved in mice of KO/MCD group. Meanwhile, total NAFLD activity scores and fibrosis were lower compared to WT+MCD group. Compared to WT/MCS group, S100A4 expression in liver tissue of WT/MCD group was enhanced. The expression of proinflammatory ($TGF-{\alpha}$, $IL-1{\beta}$, IL-6) and profibrogenic cytokines ($TGF-{\beta}1$, COL1A1, ${\alpha}-SMA$) in MCD-induced NAFLD mice were increased, as well as apoptotic index (AI). For MCD group, the expressions of proinflammatory and profibrogenic cytokines and AI in KO mice were lower than those of WT mice. Conclusion: S100A4 was detected to be upregulated in NAFLD, while S100A4 KO alleviated liver fibrosis and inflammation, in addition to inhibiting hepatocyte apoptosis.

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

A539 및 NCI-H460 인체 폐암세포의 증식 및 apoptosis 유도에 미치는 가미삼기보폐탕의 영향 (Effect of Gamisamgibopae-tang on the Growth and Apoptosis of A539 and NCI-H460 Human Lung Cancer Cells)

  • 김진영;김현중;정광식;박철;최영현;감철우;박동일
    • 대한한방내과학회지
    • /
    • 제29권1호
    • /
    • pp.130-148
    • /
    • 2008
  • Objective : This study was designed to investigate the effect of the water extract of Gamisamgibopae-tang(GMSGBPT), an oriental herbal formulation, on the growth of NCI-H460 and A549 human non-small-cell lung cancer cell lines. Methods : Cytotoxicity and cell morphology were evaluated by MTT assay and inverted microscope, respectively. Apoptosis was detected using agarose gel electrophoresis and flow cytometer. The expression levels of mRNAs and proteins of target genes were determined by RT-PCR and western blot analyses, respectively Result and Conclusion : We found that exposure of A549 cells to GMSGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, but GMSGBPTdid not affect the growth of NCI-H460 cells. The anti-proliferative effect of GMSGBPT treatment in A549 cells was associated with morphological changes, formation of apoptotic bodies and DNA fragmentation, and flow cytometry analysis confirmed that GMSGBPT treatment increased the populations of apoptotic-sub G1 phase. Growth inhibition and apoptotic cell death by GMSGBPT were connected with a up-regulation of cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) mRNA and protein in a tumor suppressor p53-independent fashion. However GMSGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), inducible nitric oxide synthase (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 orNCI-H460 cells. Taken together, these findings partially provide novel insights into the possible molecular mechanism of the anti-cancer activity of GMSGBPT.

  • PDF

Hsp90에 의한 NF-κB의 활성화를 촉진하는 IKKγ의 역할 (IKKγ Facilitates the Activation of NF-κB by Hsp90)

  • 이정아;김동완
    • 생명과학회지
    • /
    • 제32권3호
    • /
    • pp.241-248
    • /
    • 2022
  • NF-κB는 염증과 선천성 면역에 중요한 전사인자이며 anti-apoptotic gene을 유도하여 세포의 생존과 발암에도 깊이 연관되어 있으며 많은 신호전달분자 및 신호전달회로와 연결되어있다. 한편, Hsp90는 NF-κB의 활성을 조절한다는 보고가 이루어졌으나 그 구체적인 기전은 알려져 있지 않다. 본 연구에서는 IKK compelx를 구성하는 인자들의 발현 plasmid를 이용하여 NF-κB의 활성조절에서 Hsp90와 IKKγ의 연관성 및 역할을 연구하였다. 그 결과 Hsp90는 IκBα의 인산화와 분해를 촉진하여 NF-κB를 활성화시켰고, NIK과 LPS에 의한 NF-κB의 활성화는 Hsp90에 의해 더욱 활성이 증가하였다. IKKγ는 Hsp90에 의해 증가된 IκBα의 인산화와 분해를 더욱 촉진함으로써 Hsp90의 NF-κB 활성화 작용을 상승시켰다. 이러한 Hsp90와 IKKγ에 의한 NF-κB의 활성화 현상은 항상 활성화 된 상태를 유지하는 IKKβ-EE mutant를 이용한 검토에서도 입증되었다. 또한 IKKγ의 deletion mutant를 이용한 검토에서 IKKγ의 N-말단에 위치하는 IKKβ 결합부위와 C-말단에 위치하는 leucine zipper 및 zinc finger 부위는 IKKγ와 Hsp90의 NF-κB에 대한 상호협력적 촉진작용에 필요하지 않았다. 또한 Hsp90에 의해 촉진된 세포내 pro-inflammatory cytokine들의 발현은 IKKγ에 의해 더욱 상승하였다. 이러한 결과로부터 Hsp90와 IKKγ의 상호작용을 차단한다면 NF-κB의 과다활성으로 인한 질병의 예방과 치료에 도움을 줄 수 있을 것으로 사료된다.

The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

  • Han, Min Ho;Park, Cheol;Kwon, Taek Kyu;Kim, Gi-Young;Kim, Wun-Jae;Hong, Sang Hoon;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.31-38
    • /
    • 2015
  • Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-$1{\beta}$-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-$FLIP_L$-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways.

Endonuclease G is Upregulated and Required in Testicular Germ Cell Apoptosis after Exposure to 60 Hz at 200 μT

  • Park, Sungman;Kim, Min-Woo;Kim, Ji-Hoon;Lee, Yena;Kim, Min Soo;Lee, Yong-Jun;Kim, Young-Jin;Kim, Hee-Sung;Kim, Yoon-Won
    • Journal of electromagnetic engineering and science
    • /
    • 제15권3호
    • /
    • pp.142-150
    • /
    • 2015
  • Several reports supported that continuous exposure to 60 Hz magnetic field (MF) induces testicular germ cell apoptosis in vivo. We recently evaluated duration- and dose-dependent effects of continuous exposure to a 60 Hz MF on the testes in mice. BALB/c male mice were exposed to a 60 Hz MF at $100{\mu}T$ for 24 hours a day for 2, 4, 6, or 8 weeks, and at 2, 20 or $200{\mu}T$ for 24 hours a day for 8 weeks. To induce the apoptosis of testicular germ cell in mice, the minimum dose is $20{\mu}T$ at continuous exposure to a 60 Hz MF for 8 weeks, and the minimum duration is 6 weeks at continuous exposure of $100{\mu}T$. Continuous exposure to a 60 Hz MF might affect duration- and dose-dependent biological processes including apoptotic cell death and spermatogenesis in the male reproductive system of mice. The safety guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) indicates that the permissible maximum magnetic flux density for general public exposure is $200{\mu}T$ at 60 Hz EMF (ICNIRP Guidelines, 2010). In the present study, we aimed to examine the expression of pro- and anti-apoptotic genes regulated by the continuous exposure to 60 Hz at $200{\mu}T$ in Sprague-Dawley rats for 20 weeks. The continuous exposure to 60 Hz at $200{\mu}T$ does not affect the body and testicular weight in rats. However, exposure to 60 Hz MF significantly affects testicular germ cell apoptosis and sperm count. Further, the apoptosis-related gene was scrutinized after exposure to 60 Hz at $200{\mu}T$ for 20 weeks. We found that the message level of endonuclease G (EndoG) was greatly increased following the exposure to 60 Hz at $200{\mu}T$ compared with sham control. These data suggested that 60 Hz magnetic field induced testicular germ cell apoptosis through mitochondrial protein Endo G.

HCT116 대장암 세포에서 Akt-p53 신호경로를 통한 커큐민과 EGCG의 apoptosis 효과 (Apoptotic Effects of Curcumin and EGCG via Akt-p53 Signaling Pathway in HCT116 Colon Cancer Cells)

  • 박송이;이솔화;박옥진;김영민
    • 생명과학회지
    • /
    • 제21권1호
    • /
    • pp.89-95
    • /
    • 2011
  • 식품에서 추출한 파이토케미컬은 여러 암종에서 암세포의 증식억제와 apoptosis를 유도한다. 최근에 이러한 파이토케미컬의 세포 내 신호전달 기작에 관한 관심이 높아지고 있으며, 본 연구에서는 파이토케미컬의 일종인 커큐민과 EGCG를 HCT116 대장암세포에 처리함으로써 암세포의 증식억제와 apoptosis 유도 효과를 알아보고, 암세포의 증식에 관여하는 Akt의 활성과 종양 억제유전자인 p53의 신호경로를 규명하고자 하였다. 그 결과, 커큐민과 EGCG를 처리했을 때 HCT116 세포의 증식이 억제되었고, 암세포에서 apoptosis 효과가 나타남을 확인하였다. 동일한 조건에서 Western blotting을 실시했을 때 Akt의 활성은 감소하였으며 p53의 발현은 증가하였다. 또한 Akt의 저해제인 LY294002를 처리했을 때 암세포의 증식이 더욱 강하게 억제되었으며, p53의 발현은 더욱 강하게 증가하는 것으로 나타났다. 따라서 HCT116 세포에서 커큐민과 EGCG 처리에 의한 암세포의 증식 억제 및 apoptosis는 p53의 발현이 증가함에 따라 유도되며, 이러한 p53의 발현 증가는 Akt 신호경로를 저해함으로써 일어난다는 것을 확인하였다.

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.

Siamese Crocodile White Blood Cell Extract Inhibits Cell Proliferation and Promotes Autophagy in Multiple Cancer Cell Lines

  • Phosri, Santi;Jangpromma, Nisachon;Chang, Leng Chee;Tan, Ghee T.;Wongwiwatthananukit, Supakit;Maijaroen, Surachai;Anwised, Preeyanan;Payoungkiattikun, Wisarut;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.1007-1021
    • /
    • 2018
  • Cancer represents one of the most significant threats to human health on a global scale. Hence, the development of effective cancer prevention strategies, as well as the discovery of novel therapeutic agents against cancer, is urgently required. In light of this challenge, this research aimed to evaluate the effects of several potent bioactive peptides and proteins contained in crocodile white blood cell extract (cWBC) against LU-1, LNCaP, PC-3, MCF-7, and CaCo-2 cancer cell lines. The results demonstrate that 25, 50, 100, and $200{\mu}g/ml$ cWBC exhibits a strong cytotoxic effect against all investigated cell lines ($IC_{50}$ $70.34-101.0{\mu}g/ml$), while showing no signs of cytotoxicity towards noncancerous Vero and HaCaT cells. Specifically, cWBC treatment caused a significant reduction in the cancerous cells' colony forming ability. A remarkable suppression of cancerous cell migration was observed after treatment with cWBC, indicating potent antimetastatic properties. The mechanism involved in the cancer cell cytotoxicity of cWBC may be related to apoptosis induction, as evidenced by typical apoptotic morphology features. Moreover, certain cWBC concentrations induced significant overproduction of ROS and significantly inhibited the $S-G_2/M$ transition in the cancer cell. The molecular mechanisms of cWBC in apoptosis induction were to decrease Bcl-2 and XIAP expression levels and increase the expression levels of caspase-3, caspase-8, and p53. These led to a decrease in the expression level of the cell cycle-associated gene cyclin-B1 and the arrest of cell population growth. Consequently, these findings demonstrate the prospect of the use of cWBC for cancer therapy.