• Title/Summary/Keyword: Apoptotic cell death

Search Result 1,138, Processing Time 0.028 seconds

Di(2-ethylhexyl) Phthalate Induces the Apoptotic Cell Death Mediated by Production of Reactive Oxygen Species in Human Keratinocyte (미세먼지의 di(2-ethylhexyl) phthalate가 유도한 피부상피세포 사멸 신호전달기전 연구)

  • Park, Jeong-Bae;Kim, Ji-Yun;Sung, Junghee;Kim, Yong-ung;Lee, Sei-Jung
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2020
  • Particulate matter with an aerodynamic diameter of less than 2.5 μM (PM2.5) is one of the major environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP), an endocrine disrupting chemical in PM2.5, has been utilized for the manufacturing of polyvinyl chloride to increase the flexibility of final products. In the present study, we investigated the ecotoxicological effect of DEHP on the viability of skin keratinocytes (HaCaT). DEHP induced apoptotic cell death mediated by phosphorylation of extracellular signal-regulated kinase through the production of intracellular Reactive Oxygen Species (ROS). Interestingly, we found that DEHP induces the phosphorylation of the nuclear factor-kappa B responsible for the expression of cleaved caspase-3 as an executional cell death protease in HaCaT cells. On the basis of these results, we suggest that DEHP in PM2.5 induces the apoptotic death of human keratinocytes via ROS-mediated signaling events.

Mechanism of Apoptotic Cell Death by 2,4,3',5'-Tetramethoxystilbene in Human Promyelocytic Leukemic HL-60 Cells

  • Lee, Sang-Kwang;Chae, Ah-Reum;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.145-149
    • /
    • 2007
  • We have previously shown that 2,4,3',5'-tetramethoxystilbene (TMS), a synthetic trans-stilbene analogue acting as a potent inhibitor of human cytochrome P450 1B1, induces apoptotic cell death in human cancer cells. In the present studies, we report the mechanisms of apoptotic cell death by TMS in human promyelocytic leukemic HL-60 cells. We found that treatment of HL-60 cells with TMS suppressed the cell growth in a concentration-dependent manner with $IC_{50}$ value of about 0.8 ${\mu}M$. Immunoblot experiments revealed that DMHS-induced apoptosis was associated with cleavage of poly (ADP-ribose) polymerase. The release of cytochrome c from mitochondria into the cytosol was significantly increased in response to TMS. TMS caused activation of caspase-3 in a concentration-dependent manner and TMS-mediated caspase-3 activation was partially prevented by the caspase inhibitor, zVAD-fmk. Interestingly, we found that the cytotoxic effect of anticancer drugs such as paclitaxel, docetaxel, or etoposide was enhanced in the presence of TMS. Simultaneous treatment with TCDD also significantly increased cytotoxic effects of TMS alone or TMS and anti-cancer agents. Taken together, our present results indicated that TMS leads to apoptotic cell death in HL-60 cells through activation of caspase-3 activity and release of cytochrome c into cytosol. The ability of TMS to increase cytotoxic effect of anticancer drugs may contribute to its usefulness for cancer chemotherapy.

Effects of Citri Reticulatae Viride Pericarpium on the Apoptotic Cell Death in Breast Cancer Cells (청피(靑皮)가 유방암세포의 Apoptosis에 미치는 영향)

  • Kim, Ji-Eun;Park, Soo-Yeon;Choi, Chang-Won;Kim, Kyeong-Soo;Kim, Kyeong-Ok;Wei, Tung-Shuen;Yang, Seung-Joung
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.40-54
    • /
    • 2015
  • Objectives : In the theory of Korean medicine, Citri Reticulatae Viride Pericarpium (CRVP) can soothe the liver to break qi stagnation, eliminate mass and relieve dyspepsia. This study was carried out to investigate the effects of CRVP on the apoptotic cell death in breast cancer cells. Methods : In the present experiment, the effects of CRVP on proliferation rates, type of cell death, cell cycle distribution, and intracellular oxidative stress were investigated using MDA-MB-231 cells in vitro. In addition, the effects on expression levels of caspase 3, caspase 9, Bax and Bcl-2 were also investigated. Results : Treatment with CRVP decreased proliferation rates in a dose dependent manner. ID50 (50% inhibitory dosage) was 175.4 μg/ml. In the CRVP treated group, cell volumes showed smaller than non-treated normal. In addition, CRVP increased percentage of apoptotic and sub G1 arrested cells respectively. 200 μg/ml of CRVP treatment increased intracellular ROS level significantly. Finaly the expression level of caspase 3 and Bax/Bcl-2 ratio were elevated by treatment with CRVP respectively. Conclusions : These results suggest that CRVP can trigger intrinsic apoptotic pathway in MDA-MB-231 cells.

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Effect of Grape Skin Extract on Apoptosis in MDA-MB-231 Human Breast Cancer Cells (포도껍질 추출물이 인체유방암세포 사멸에 미치는 영향)

  • Park, Min-A;Kang, Keum-Jee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.1
    • /
    • pp.87-98
    • /
    • 2015
  • We investigated the apoptotic effects of grape skin extracts (GSE) and related gene expressions in human breast cancer MDA-MB-231 cells cultured in the presence of 0, 0.5, 1 and 1.5 mg/mL of GSE for 72 hours. MTT assay, trypan blue and nuclei staining showed lower cellular mitochondrial activities and increased cell deaths with a higher concentration of GSE (p<0.05). Increased cell number with fragmentated DNA of sub-G1 phase was calculated as a measure of apoptotic cell death by FACS analysis (p<0.05). In particular, apoptotic cell death caused markedly increased in the 1 and 1.5 mg/mL of GSE groups, as revealed by flow cytometry (Annexin V-FITC). RT-PCR analysis was performed on apoptotic and preapoptotic genes. Expression of the apoptosis suppressor gene bcl-2 significantly decreased, proapoptotic gene bax was significantly increased and procaspase-3 showing the presence of caspase-3 significantly decreased (p<0.05). Furthermore, bcl-2/bax ratio which is considered to be an important indicator of apoptosis, significantly decreased in a concentration-dependent manner (p<0.05). These results indicated that GSE induces apoptosis in MDA-MB-231 human breast cancer cells.

Effects on the Apoptosis of U937 cell line by n-butanol Extracts of Drynariae Rhizoma (골쇄보(骨碎補) 부탄올 추출물의 U937세포주 세포자멸사에 미치는 효과)

  • Cho, Sung-Yeon;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.358-364
    • /
    • 2006
  • To investigate the possible mechanism of Drynariae Rhizoma extracts as a candidate of anti-cancer drug, I examined the effects of Drynariae Rhizoma extracts on the apoptosis of U937 cell line. MTT assay, flow cytometric analysis, SDS-polyacrylamide gel electrophoresis, Western blot analysis, and RT-PCR were performed. Drynariae Rhizoma extracts treatment reduced the cell viablilty of U937 cells in a dose-dependent manner, which was associated with induction of apoptotic cell death. Drynariae Rhizoma extracts treatment also reduced the levels of Bcl-xL anti-apoptotic protein expression and increased the levels of caspase-3, p53, pro-apoptotic protein, in U937 cells. RT-PCR data revealed that the level of bcl-2, bcl-xL mRNA expressions decreased in a dose-dependent manner. These findings suggest that Drynariae Rhizoma extracts may have induction of apoptotic cell death via regulation of several growth regulatory gene products. The abbreviations used are: FBS, fetal bovine serum; PBS, phosphate buffered saline; PI, propidium iodide; OD, optical density; DiOC6, 3,3-dihexyloxa carbcyanine iodide; MTT, 3 [4-5-dimethylthiazol-2-yl] -2-diphenyltetrazolium bromide.

Anti-tumor Activity of Saussurea laniceps against Pancreas Adenocarcinoma

  • Lee, Keyong Ho;Kim, Byeong- Soo;Rhee, Ki-Hyeong
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.281-285
    • /
    • 2017
  • The purpose of this study was to confirm the anti-tumor activity of an ethanol extract of Saussurea laniceps against pancreatic tumor and to isolate the active compound from S. laniceps extract. Treatment with S. laniceps extract and hispidulin inhibited proliferation of pancreatic cell lines, such as Capan-1, Capan-2, Panc-1 and S2-013 in a dose-dependent manner using the hollow fiber assay. Hispidulin showed typical hallmarks of apoptotic cell death a significant anti-tumor activity on Capan-2 cells at a dose of 100 mg/kg and 200 mg/kg. S. laniceps has potential cytotoxic and apoptotic effects on human pancreatic carcinoma cells. Its mechanism of action might be associated with the apoptotic cell death through DNA fragmentation.

Inhibition of Proliferation and Induction of Apoptosis by EGCG in Human Osteogenic Sarcoma (HOS) Cells

  • Ji Sang-Jin;Han Dong-Hoon;Kim Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.363-368
    • /
    • 2006
  • EGCG [(-)-epigallocatechin-3-gallate], a major component of green tea has been considered as a major antioxidant constituent. In addition to having been considered for cancer treatment as a chemopreventive and chemotherapeutic agent, EGCG has recently been attributed an anti-proliferative effect. We re-examined the latter finding in this study and added specific focus on the ability of EGCG to induce apoptosis in human osteogenic sarcoma (HOS) cells. Antiproliferative action of EGCG $(IC_{50}=35.3{\pm}6.0{\mu}g/mL)$ appeared to be linked to apoptotic cell death based on morphological changes, chromosomal DNA degradation, and an increase in the $sub-G_1$ apoptotic cell population. Treatment of HOS cells with EGCG gradually activated caspase-3, an established inducer of apoptotic cell death.

Mori Fructus Induces Cell Death through ROS-dependent Mitochondrial Apoptotic Pathway in Human Glioma Cells

  • Jang, Sang-Won;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1322-1329
    • /
    • 2008
  • Mulberry has been reported to contain wide range of polyphenols and have chemopreventive activity. However, little has been known regarding the effect of mulberry fruits on cell viability in human glioma cells. The present study was undertaken to examine the effect of mulberry fruit (Mar; Fructus) on cell viability and to determine its underlying mechanism in human glioma cells. Cell viability and cell death were estimated by MTT assay and trypanblue exclusion assay, respectively. Reactive oxygen species (ROS) generation was measured using the fluorescence probe DCFH-DA. The mitochondrial transmembrane potential was measured with $DiOC_6$(3). Bax expression and cytochrome c release were measured by Western blot analysis. Caspase activity was estimated using colorimetric kit. Mori Fructus resulted in apoptotic cell death in a dose- and time-dependent manner. Mori Fructus increased ROS generation and the Mori Fructus-induced cell death was also prevented by antioxidants, suggesting that ROS generation plays a critical role in Mari Fructus-induced cell death. Western blot analysis showed that Mori Fructus treatment caused an increase in Bax expression, which was inhibited by the antioxidant N-acetylcysteine (NAC). Mori Fructus induced depolarization of mitochondrial membrane potential and its effect was inhibited by the antioxidants NAC and catalase. Mori Fructus induced cytochrome c release, which was inhibited by NAC. Caspase activity was stimulated by Mori Fructus and caspase inhibitors prevented the Mori Fructus-induced cell death. These findings suggest that Mori Fructus results in human glioma cell death through ROS-dependent mitochondrial pathway in human glioma cells.

Programmed Cell death in plants

  • Fukuda, Hiroo
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.69-73
    • /
    • 1999
  • In plants as well as in other multicellular organisms, programmed cell death plays essential roles in the abortion or formation of specific cells and tissues during development to organize the plant [11, 15, 18]. A typical example of developmentally programmed cell death in plants is the death during differentiation of tracheary elements which are components of vessels and tracheids, a water-conducting system. The programming of cell death during tracheary element differentiation has been revealed to be unique to plant cells by using the in vitro Zinnia mesophyll cell culture system. In particular, new biosynthesis of autolysis-related enzymes such as cysteine proteases and nucleases, their accumulation of the vacuole and the programmed collapse of the vacuole are essential to the death of tracheary elements and differ greatly from the process of the apoptotic cell death in animals.

  • PDF