• Title/Summary/Keyword: Apoptosis inhibitor 5

Search Result 232, Processing Time 0.026 seconds

Src Family Kinase Inhibitor PP2 Induces LC3 Conversion in a Manner That is Uncoupled from Autophagy and Increases Apoptosis in Multidrug-Resistant Cells

  • Kim, Yun-Ki;Ahn, Jun-Ho;Lee, Mi-Chael
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.393-398
    • /
    • 2012
  • Recently, we reported that defective autophagy may contribute to the inhibition of the growth in response to PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a selective SFK inhibitor, in multidrug-resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr). In this study, we demonstrated that PP2 induces LC3 conversion via a mechanism that is uncoupled from autophagy and increases apoptosis in Ras-NIH 3T3/Mdr cells. PP2 preferentially induced autophagy in Ras-NIH 3T3 cells rather than in Ras-NIH 3T3/Mdr cells as determined by LC3-I to LC3-II conversion and GFP-LC3 fluorescence microscopy. Beclin 1 knockdown experiments showed that, regardless of drug resistance, PP2 induces autophagy via a Beclin 1-dependent mechanism. PP2 induced a conformational change in Beclin 1, resulting in the enhancement of the pro-autophagic activity of Beclin 1, in Ras-NIH 3T3 cells. Further, PI3K inhibition induced by wortmannin caused a significant increase in apoptosis in Ras-NIH 3T3 cells, as demonstrated by flow cytometric analysis of Annexin V staining, implying that autophagy inhibition through PI3K increases apoptosis in response to PP2 in Ras-NIH 3T3 cells. However, despite the fact that wortmannin abrogates PP2-induced GFP-LC3 punctae formation, some LC3 conversion remains in Ras-NIH 3T3/Mdr cells, suggesting that LC3 conversion may occur in an autophagy-independent manner. Taken together, these results suggest that PP2 induces LC3 conversion independent of PI3K, concomitant with the uncoupling of LC3 conversion from autophagy, in multidrug-resistant cells.

A Cyclin-Dependent Kinase Inhibitor, p16^{INK4A}, Induces Apoptosis in The Human Cancer Cells. (Cyclin-dependent Kinase저해 단백질 p16^{INK4A}의 인체 암세포에서의 세포사멸 유도 활성)

  • 김민경;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Previously, we synthesized a novel Cyclin-dependent kinase inhibitor, MCS-5A. Also, we investigated the involvement of cell cycle regulatory events during MCS-5A-mediated apoptosis in HL-60(+p16/-p53) cells with up-regulation of p16 protein expression. In contrast, apoptosis was not observed in A549(-p16/+p53) cells. Therefore we propose that $p16^{INK4A}$ is a key enzyme for inducing apoptosis. In the present studies, we have explored the mechanism of $p16^{INK4A}$ -mediated cytotoxicity and the role of p16.sup INK4A/ overexpression in the induction of apoptosis in human tumor cells. The tumor suppressor gene $p16^{INK4A}$ is known as a cyclin-dependent kinase inhibitor (CKI) and cell cycle regulator. We expressed wild type $p16^{INK4A}$ in pcDNA3.1 vector and then transfected into non-small cell lung cancer (NSCLC) cell expressing different statue of p16$^{INK4A}$, p53 gene〔A549(-p16/+p53), H1299(-p16/-p53) and HeLa(+pl6/+p53) cell line〕. TUNEL assay (including propidium iodide staining following transfection of these cell line with pcDNA3.1-pl6) indicate that p16$^{INK4A}$-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating an induction of caspase 3 cleavage due to the transfection of A549, H1299 and HeLa cells with pcDNA3.1-pl6. These results suggest that p16$^{INK4A}$ has a new function of inducing apoptosis which is not related with the function of tumor suppressor gene p53.

COX-2 INHIBITOR INDUCED APOPTOSIS IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE THROUGH AKT PATHWAY (COX-2 억제제에 의한 AKT 경로를 통한 구강편평세포암종 세포주의 세포사멸 유도)

  • Seo, Young-Ho;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.30-40
    • /
    • 2008
  • The objectives of this study was to check up the effect of celecoxib, COX-2 inhibitor, on the pathogenesis of oral squamous cell carcinoma. After mefenamic acid, aspirin and celecoxib, COX-2 inhibitor, were inoculated to HN 22 cell line, the following results were obtained through tumor cell viability by wortmannin, growth curve of tumor cell line, apoptotic index, PGE2 synthesis, total RNA extraction, RT-PCR analysis and TEM features. 1. When wortmannin and celecoxib were given together, the survival rate of tumor cells was lowest about 47 %. So wortmannin had an effect on the decrease of survival rate of tumor cells. 2. In growth curve, the slowest growth was observed in celecoxib inoculated group. 3. The synthesis of PGE2 was decreased in all group and the obvious suppression and highest apoptotic index was observed in celecoxib inoculated group. 4. Suppression of expression of COX-2 mRNA was evident in celecoxib inoculated group. But that of COX-1,2 mRNA was observed in mefenamic acid inoculated group and aspirin inoculated group. 5. In celecoxib inoculated group, mRNA expression of AKT1 was decreased and that of PTEN & expression of caspase 3 and 9 was evidently increased. Depending on above results, when celecoxib was inoculated to oral squamous cell carcinoma cell line, an increase of mRNA expression of caspase 3,9 and PTEN is related to a decrease of mRNA expression of AKT1. Wortmannin had an effect on the decrease of survival rate of tumor cells. Celecoxib might induce apoptosis of tumor cell by suppression of AKT1 pathway and COX-2 inhibition. This results suggested that COX-2 inhibitor might be significantly effective in chemoprevention of oral squamous cell carcinoma.

Celecoxib, a COX-2 Selective Inhibitor, Induces Cell Cycle Arrest at the G2/M Phase in HeLa Cervical Cancer Cells

  • Setiawati, Agustina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1655-1659
    • /
    • 2016
  • Celecoxib, a selective inhibitor of COX-2, showed cytotoxic effects in many cancer cell lines including cervical cancer cells. This study investigated the effect of celecoxib on cell cycle arrest in HeLa cervical cancer cells through p53 expression. In vitro anticancer activity was determined with the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method. A double staining method was applied to investigate the mechanism of cell death, cell cycling was analyzed by flow cytometryand immunocytochemistry was employed to stain p53 expression in cells. Celecoxib showed strong cytotoxic effects and induced apoptosis with an $IC_{50}$ value of $40{\mu}M$. It induced cell cycle arrest at G2/M phase by increasing level of p53 expression on HeLa cells.

Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells (A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.815-822
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), a natural stilbene, is an analogue of resveratrol. Although recent experimental data have revealed the health benefit potency of piceatannol, the molecular mechanisms underlying the anti-cancer activity have not yet been studied in detail. In the present study, the further possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human lung cancer A549 cells were investigated. Exposure of A549 cells to piceatannol resulted in growth inhibition and induction of apoptosis. Apoptosis induction of A549 cells by piceatannol showed correlation with proteolytic activation of caspase-3, -8, and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase, phospholipase C-${\gamma}1$, ${\beta}$-catenin, and Inhibitor caspase-activated DNase. The increase in apoptosis by piceatannol treatment was also associated with an increase of pro-apoptotic Bax expression and decrease of anti-apoptotic Bcl-2 and Bcl-xL expression, and caused down-regulation of the inhibitor of apoptosis protein family members and up-regulation of Fas and Fas legend. In addition, piceatannol treatment markedly inhibited the expression of mRNA and proteins of inducible nitric oxide (NO) synthase, and the levels of NO production were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. The results indicate that piceatannol may have therapeutic potential against human gastric cancer cells.

USP14 inhibition regulates tumorigenesis by inducing apoptosis in gastric cancer

  • Mi Yea Lee;Min-Jee Kim;Jun-O Jin;Peter Chang-Whan Lee
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.451-456
    • /
    • 2023
  • Deubiquitinases (DUBs) are an essential component of the ubiquitin-proteasome system (UPS). They trim ubiquitin from substrate proteins, thereby preventing them from degradation, and modulate different cellular processes. Ubiquitin-specific protease 14 (USP14) is a DUB that has mainly been studied for its role in tumorigenesis in several cancers. In the present study, we found that the protein levels of USP14 were remarkably higher in gastric cancer tissues than in the adjacent normal tissues. We also demonstrated that the inhibition of USP14 activity using IU1 (an USP14 inhibitor) or the inhibition of USP14 expression using USP14-specific siRNA markedly reduced the viability of gastric cancer cells and suppressed their migratory and invasive abilities. The reduction in gastric cancer cell proliferation due to the inhibition of USP14 activity was a result of the increase in the degree of apoptosis, as evidenced by the increased expression levels of cleaved caspase-3 and cleaved PARP. Furthermore, an experiment using the USP14 inhibitor IU1 revealed that the inhibition of USP14 activity suppressed 5-fluorouracil (5-FU) resistance in GC cells. Collectively, these findings indicate that USP14 plays critical roles in gastric cancer progression and suggest its potential to serve as a novel therapeutic target for gastric cancer treatment.

Expression of Cyclooxygenase-2 in Intestinal Epithelial Cells in Response to Invasive Bacterial Infection and its Role of Epithelial Cell Apoptosis (침습성 세균 감염에 의한 사람 장상피세포에서의 Cyclooxygenase-2 발현 및 이의 발현이 상피세포 Apoptosis에 미치는 영향)

  • Kim, Jung-Mogg;Kang, Shin-Jae;Cho, Yang-Ja
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.5
    • /
    • pp.479-489
    • /
    • 1999
  • Invasion of enteric bacteria, such as Salmonella and invasive E. coli, into intestinal epithelial cells induces proinflammatory gene responses and finally epithelial cell apoptosis. In this study, we asked whether invasive bacterial infection of human intestinal epithelial cells could upregulate cyclooxygenase-2 (COX-2) gene expression and whether increased COX-2 expression could influence intestinal epithelial cell apoptosis. Expression of COX-2 mRNA and prostaglandin (PG) $E_2$ production were upregulated in HT-29 colon epithelial cells which were infected with S. dublin or invasive E. coli, as examined by quantitative RT-PCR and radioimmunoassay. Inhibition of COX-2 expression and $PGE_2$ production using NS-398, a specific COX-2 inhibitor, showed a significant increase of epithelial cell apoptosis and caspase-3 activation in HT-29 cells infected with invasive bacteria. However, the addition of valerylsalicylate, a specific COX-1 inhibitor, did not change apoptosis in S. dublin-infected HT-29 cells. These results suggest that up regulated COX-2 expression and $PGE_2$ production in response to invasive bacterial infection could contribute to host defense by inhibiting apoptosis of intestinal epithelial cells.

  • PDF

Antitumor Activity of Histone Deacetylase Inhibitor Trichostatin A in Osteosarcoma Cells

  • Cheng, Dong-Dong;Yang, Qing-Cheng;Zhang, Zhi-Chang;Yang, Cui-Xia;Liu, Yi-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1395-1399
    • /
    • 2012
  • Background: Histone deacetylase (HDAC) inhibitors have been reported to induce cell growth arrest, apoptosis and differentiation of tumor cells. The present study aimed to examine the effects of trichostatin A (TSA), one such inhibitor, on the cell cycle, apoptosis and invasiveness of osteosarcoma cells. Methods: MG-63 cells were treated with TSA at various concentrations. Then, cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) and TUNEL assays, respectively; cell cycling was assessed by flow cytometry; invasion assays were performed with the transwell Boyden Chamber system. Results: MTT assays revealed that TSA significantly inhibited the growth of MG-63 cells in a concentration and time dependent manner. TSA treated cells demonstrated morphological changes indicative of apoptosis and TUNEL assays revealed increased apoptosis of MG-63 cells after TSA treatment. Flow cytometry showed that TSA arrested the cell cycle in G1/G2 phase and annexin V positive apoptotic cells increased markedly. In addition, the invasiveness of MG-63 cells was inhibited by TSA in a concentration dependent manner. Conclusion: Our findings demonstrate that TSA inhibits the proliferation, induces apoptosis and inhibits invasiveness of osteosarcoma cells in vitro. HDAC inhibitors may thus have promise to become new therapeutic agents against osteosarcoma.

Induction of Cdk inhibitor p21 and inhibition of cyclooxygenase-2 by resveratrol in human lung carcinoma A549 cells. (Resveratrol에 의한 A549 인체 폐암세포의 증식억제 및 apoptosis 유발에 관한 연구)

  • 김영애;임선영;이숙희;박건영;이원호;최영현
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.800-808
    • /
    • 2004
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including antioxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects. According to recent studies, this compound is an effective inhibitor of cell growth in general, triggers partial arrest of the cell cycle and induce apoptosis. In this study, the anti-proliferative effects of resveratrol in A549 human lung carcinoma cells were investigated. It is shown that resveratrol induced the growth inhibition in a time-dependent manner and morphological changes of A549 cells, which were associated with induction of S phase arrest of the cell cycle and apoptotic cell death. The Bcl-$X_L$levels were markedly down-regulated in resveratrol treated cells, however, Bax and Bcl-2 were remained unchanged. Resveratrol treatment induced the proteolytic degradation of Sp-l and proliferating cell nuclear antigen protein, and inhibited the expression of $\beta$-catenin protein. Resveratrol treatment also induced a marked up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21 and inhibited the kinase activities of Cdk2 and Cdk4. In addition, resveratrol treatment inhibited the levels of cyclooxygenase (COX)-2 mRNA and protein, and the release of prostagladin E2 without alteration of COX-1 expression. Taken together, these findings suggest that resveratrol may be a potential chemotherapeutic agent for the control of human lung carcinorma cells.

Anticancer Effect of COX-2 Inhibitor DuP-697 Alone and in Combination with Tyrosine Kinase Inhibitor (E7080) on Colon Cancer Cell Lines

  • Altun, Ahmet;Turgut, Nergiz Hacer;Kaya, Tijen Temiz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3113-3121
    • /
    • 2014
  • Colorectal cancer remains one of the most common types of cancer and a leading cause of cancer death worldwide. In this study, we aimed to investigate effects of DuP-697, an irreversible selective inhibitor of COX-2 on colorectal cancer cells alone and in combination with a promising new multi-targeted kinase inhibitor E7080. The HT29 colorectal cancer cell line was used. Real time cell analysis (xCELLigence system) was conducted to determine effects on colorectal cell proliferation, angiogenesis was assessed with a chorioallantoic membrane model and apoptosis was determined with annexin V staining. We found that DuP-697 alone exerted antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells. For the antiproliferative effect the half maximum inhibition concentration ($IC_{50}$) was $4.28{\times}10^{-8}mol/L$. Antiangiogenic scores were 1.2, 0.8 and 0.5 for 100, 10 and 1 nmol/L DuP-697 concentrations, respectively. We detected apoptosis in 52% of HT29 colorectal cancer cells after administration of 100 nmol/L DuP-697. Also in combination with the thyrosine kinase inhibitor E7080 strong antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells were observed. This study indicates that DuP-697 may be a promising agent in the treatment of colorectal cancer. Additionally the increased effects observed in the combination with thyrosine kinase inhibitor give the possibility to use lower doses of DuP-697 and E7080 which can avoid and/or minimize side effects.