• Title/Summary/Keyword: Apoptosis Caspase-3

Search Result 1,500, Processing Time 0.034 seconds

Native plants (Phellodendron amurense and Humulus japonicus) extracts act as antioxidants to support developmental competence of bovine blastocysts

  • Do, Geon-Yeop;Kim, Jin-Woo;Park, Hyo-Jin;Yoon, Seung-Bin;Park, Jae-Young;Yang, Seul-Gi;Jung, Bae Dong;Kwon, Yong-Soo;Kang, Man-Jong;Song, Bong-Seok;Kim, Sun-Uk;Chang, Kyu-Tae;Koo, Deog-Bon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1245-1252
    • /
    • 2017
  • Objective: Phellodendron amurense (P. amurense) and Humulus japonicus (H. japonicus) are closely involved in anti-oxidative response and increasing antioxidant enzymes activities. However, the effects of their extracts on development of preimplantation bovine embryos have not been investigated. Therefore, we investigated the effects of P. amurense and H. japonicus extracts on developmental competence and quality of preimplantation bovine embryos. Methods: After in vitro fertilization, bovine embryos were cultured for 7 days in Charles Rosenkrans amino acid medium supplemented with P. amurense ($0.01{\mu}g/mL$) and H. japonicus ($0.01{\mu}g/mL$). The effect of this supplementation during in vitro culture on development competence and antioxidant was investigated. Results: We observed that the blastocysts rate was significantly increased (p<0.05) in P. amurense ($28.9%{\pm}2.9%$), H. japonicus ($30.9%{\pm}1.5%$), and a mixture of P. amurense and H. japonicus ($34.8%{\pm}2.1%$) treated groups compared with the control group ($25.4%{\pm}1.6%$). We next confirmed that the intracellular levels of reactive oxygen species (ROS) were significantly decreased (p<0.01) in P. amurense and/or H. japonicus extract treated groups when compared with the control group. Our results also showed that expression of cleaved caspase-3 and apoptotic cells of blastocysts were significantly decreased (p<0.05) in bovine blastocysts derived from both P. amurense and H. japonicus extract treated embryos. Conclusion: These results suggest that proper treatment with P. amurense and H. japonicus extracts in the development of preimplantation bovine embryos improves the quality of blastocysts, which may be related to the reduction of ROS level and apoptosis.

The Protective Activity of Soeumin Bojungykgi-tang Water Extract Against Oxidative Stress-induced Hepato-Toxicity (산화적 스트레스로 유도된 간손상에 대한 소음인보중익기탕 열수추출물의 간세포보호효과)

  • Son, Jin Won;Jung, Ji Yun;Kim, Kwang-Youn;Hwangbo, Min;Park, Chung A;Cho, IL Je;Back, Young Doo;Jung, Tae Young;Kim, Sang Chan;Jee, Seon Young
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.509-526
    • /
    • 2017
  • Background and objectives : Soeumin Bojungykgi-tang (seBYTE) has been used to supplement qi in Korean medicine. It has been demonstrated to possess various biological functions such as anti-cancer, anti-aging and anti-inflammatory effects. The present study evaluated the protective roles of seBYTE in hepatotoxic in vitro and in vivo model. Methods : To investigate cytoprotective effect of seBYTE, HepG2 cells were pretreated with seBYTE and then subsequently exposed to $10{\mu}m$ AA for 12 h, followed by $5{\mu}m$ iron. Cell viability was examined by MTT assay, and expression of apoptosis-related proteins was evaluated by immunoblot analysis. For responsible molecular mechanisms, ROS production, GSH contents, and mitochondrial membrane potential were measured. In addition, hepatoprotective effect of seBYTE in vivo was assessed in $CCl_4$-induced animal model. Results : seBYTE prevented AA + iron-induced cytotoxicity in concentration dependent manner. In addition, ROS production, GSH depletion, and mitochondrial dysfunction induced by AA + iron were significantly reduced by seBYTE pretreatment. Furthermore, seBYTE recovered expression of the pro-apoptotic proteins such as PARP and pro-caspase-3. In animal experiment, plasma ALT and AST levels were significantly elevated in $CCl_4$ treatment, but seBYTE significantly decreased the ALT and AST levels. Moreover, seBYTE alleviated the numbers of histological activity index, percentages of degenerative regions, degenerated hepatocytes, infiltrated inflammatory cells, nitrotyrosine- and 4-hydroxynonenal-positive cells in liver. Conclusions : These results showed that hepatoprotective effect of seBYTE against on $CCl_4$-induced hepatic damages is partly due to antioxidative and anti-apoptotic process.

An Experimental Study of Effect on ECV 304 Cells, Platelet Rich Plasma and Rats treated with L-NAME by Boonsimgieum extract (분심기음(分心氣飮)이 고혈압 백서와 인간유래 혈관내피세포주(ECV 304)에 미치는 영향에 대한 연구)

  • Jeon, Yeon-Yi;Park, Chang-Gook;Lee, So-Yeon;Yoon, Hyeon-Deok;Shin, Wo-Cheol;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.182-198
    • /
    • 2005
  • Object : This study was designed to research whether the protection and inhibitory effects of cardiovascular diseases in L-NAME induced rat or ECV 304 cell lines through the Cell morphological pattern, Tunel assay, LDH activity, heart rate, blood pressure and immunohistochemistric analysis by Boonsimgieum water extract Methods : Nitric oxide(NO) play an important role in normal and pathophysiological cells including as a messenger molecule, neurotransmitter, microbiocidal agent, or dilator of blood vessels and artheriosclerosis, hypertension, myocardial infarction, respectively. Endothelial cell products can modulate the magnitude of a response to a vasoconstrictor, as evinced by the greater constriction after endothelium removal or NO synthesis blockade. To investigate that Boonsimgieum in the potential contribution of the levels of nitric oxide generated by endothelial nitric oxide synthase (eNOS) and the mechanisms of protection against NG-nitro-L-arginine methyl ester (L-NAME), human ECV 304 cells, which normally do not express eNOS, were expressed by L-NAME. L-NAME stimulated rat or cells were found to be resistant to injury and delayed death following the Boonsimgieum. Inhibition of nitric oxide synthesis abolished the protective effect against L-NAME, thrombin and collagen exposure. Interestingly, such effects have been observed during stimulation with agents such as phenylephrine and KCl on L-NAME mediate rats, were damaged by the NOS inhibitor L-NAME. Result : As the result of this study, In group, the anti-apoptosis and necrosis in the cardiovascular system have a potential capacity for prevented, protected and treating the diseases of cardiovascular system, against the necrosis of rat and ECV 304 cells with Caspase 3 and calpain expression by L-NAME is promoted. Conclusion : these results demonstrate neuroprotective and memory enhancing effects of ZIBU, suggesting its beneficial actions for the treatment of AD.

  • PDF

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

The antioxidant icariin protects porcine oocytes from age-related damage in vitro

  • Yoon, Jae-Wook;Lee, Seung-Eun;Park, Yun-Gwi;Kim, Won-Jae;Park, Hyo-Jin;Park, Chan-Oh;Kim, So-Hee;Oh, Seung-Hwan;Lee, Do-Geon;Pyeon, Da-Bin;Kim, Eun-Young;Park, Se-Pill
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.546-557
    • /
    • 2021
  • Objective: If fertilization does not occur within a specific period, the quality of unfertilized oocytes in the oviduct (in vivo aging) or in culture (in vitro aging) will deteriorate over time. Icariin (ICA), found in all species of Epimedium herbs, has strong antioxidant activity, and is thought to exert anti-aging effects in vitro. We asked whether ICA protects oocytes against age-related changes in vitro. Methods: We analyzed the reactive oxygen species (ROS) levels and expression of antioxidant, maternal, and estrogen receptor genes, and along with spindle morphology, and the developmental competence and quality of embryos in the presence and absence of ICA. Results: Treatment with 5 μM ICA (ICA-5) led to a significant reduction in ROS activity, but increased mRNA expression of glutathione and antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, peroxiredoxin 5, and nuclear factor erythroid 2-like 2), during aging in vitro. In addition, ICA-5 prevented defects in spindle formation and chromosomal alignment, and increased mRNA expression of cytoplasmic maturation factor genes (bone morphogenetic protein 15, cyclin B1, MOS proto-oncogene, serine/threonine kinase, and growth differentiation factor-9). It also prevented apoptosis, increased mRNA expression of antiapoptotic genes (BCL2-like 1 and baculoviral IAP repeat-containing 5), and reduced mRNA expression of pro-apoptotic genes (BCL2 antagonist/killer 1 and activation of caspase-3). Although the maturation and cleavage rates were similar in all groups, the total cell number per blastocyst and the percentage of apoptotic cells at the blastocyst stage were higher and lower, respectively, in the control and ICA-5 groups than in the aging group. Conclusion: ICA protects oocytes against damage during aging in vitro; therefore, it can be used to improve assisted reproductive technologies.

Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells (AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성)

  • Sang Mi Park;Dae Hwa Jung;Byung Gu Min;Kyung Hwan Jegal;Sung Hui Byun;Jae Kwang Kim;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

Protective effect of Eucommia ulmoides oliver leaves against PM2.5-induced oxidative stress in neuronal cells in vitro (미세먼지(PM2.5)로 유도된 산화적 스트레스에 대한 두충(Eucommia ulmoides Oliver) 잎의 in vitro 뇌 신경세포 보호 효과)

  • Kim, Min Ji;Kang, Jin Yong;Park, Seon Kyeong;Kim, Jong Min;Moon, Jong Hyun;Kim, Gil Han;Lee, Hyo Lim;Jeong, Hye Rin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.423-433
    • /
    • 2021
  • This study was performed to examine the neuroprotective effect of the ethyl acetate fraction from Eucommia ulmoides oliver leaf (EFEL) on PM2.5-induced cytotoxicity. EFEL had higher total phenolic and flavonoid contents than the other fractions. In ABTS and DPPH radical scavenging activities, the IC50 of EFEL was measured as 212.80 and 359.13 ㎍/mL, respectively. To investigate the neuroprotective effect of EFEL, MTT and DCF-DA assays were performed on HT22, MC-IXC, and BV-2 cells. EFEL effectively decreased PM2.5-induced intercellular reactive oxygen species (ROS) content and inhibited PM2.5-induced cell death. In the results of protein expression related to cellular cytotoxicity on microglial cells (BV-2), EFEL had an improvement effect on cell apoptosis and inflammatory pathways. Rutin and chlorogenic acid were identified as the main physiological compounds. Moreover, it was expected that EFEL, including rutin and chlorogenic acid, could be functional food substances with neuroprotective effects against PM2.5-induced oxidative stress.

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.

Inhibitory Mechanisms of Cell Cycle Regulation Induced by Indole-3-carbinol in Hepatocellular Carci-noma HepG2 Cells. (간암 세포주에서의 Indole-3-Carbinol에 의해 유도되는 세포주기 억제 기전)

  • 김동우;이광수;김민경;조율희;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2001
  • The naturally occurring chemical indole-3-carbinol (13C), found in vegetables of the Brassica genus, is a promising anticancer agent that was shown previ- ously to induce a Gl cell cycle arrest of human breast cancer cell lines, independent of estrogen receptor signaling. The anticancer activity of 13C and the possible mechanisms of its action were explored in a human hepatocellular carcinoma cell line, HepG2. Treatment of HepG2 cells with 13C suppressed the growth of the cells. The growth sup- pression caused by 13C ($IC_{50}$/: 444$\mu$M) was found to be partially due to its ability to stop the cell cycle in HepG2 cells. Western blot analysis for the Gl phase artiest demonstrated that the expression-levels of cyclin-dependent kinase (Cdk4, Cdk6) and cyclic D were reduced strongly after treatment of Hep72 cells with 13C (4007M) for 24- 72 hrs. Furthermore, I3C selectively abolished the expression of Cdk6 in a dose- and time-dependent manner, and accordingly, inhibited the phosphorylation of retinoblastoma. Interestingly, after the HepG2 cells reached their max- imal growth arrest, the level of the p21, a well-known Cdk inhibitor, increased significantly. Therefore, it could be considered that the Gl arrest of HepG2 cells treated with 13C was due to the indirect inhibition of Cdk4/6 activities by p21 Western blot analysis for G2/M phase arrest of demonstrated the levels of Cdc2 and cyclin Bl werer reduced dramatically after the treatment of HepG2 cells with 13C ($40\mu$M) for 24-72 hrs. flow cytometry of propidium iodide-stained HepG2 cells revealed that 13C induces a Gl (53%,72hr incubation) and G2 (25%,24hr incubation) cell cycle arrest. Thus, our observations have uncovered a previously undefined antiproliferative pathway for r3C that implicates Cdk4/6 and Cdc2 as a target for cell cycle control in human HepG2 cells. However, the 13C-medi- ated cell cycle arrest and repression of Cdk4/6 production did not affect the apoptotic induction of HepG2 cell.

  • PDF

ω3-Polyunsaturated Fatty Acids-induced Inhibition of Tumorigenicity and Invasion by Suppression of COX-2/MMPs/VEGF through NF-kB in Colon Cancer Cells (오메가-3 지방산에 의한 COX-2/MMPs/VEGF 억제에 따른 대장암세포의 종양 형성 및 침윤 억제)

  • Shin, Soyeon;Kim, Yong-Jo;Han, Seung-Hyeon;Silwal, Prashanta;Heo, Jun-Young;Jeon, Young-Joo;Park, Seung-Kiel;Kweon, Gi-Ryang;Park, Jong-Il;Lim, Kyu
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1020-1030
    • /
    • 2017
  • Epidemiology studies have reported a reduced incidence of colon cancer among populations that consume a large quantity of ${\omega}3-polyunsaturated$ fatty acids (${\omega}3-PUFAs$) of marine origin. Herein, we demonstrated a mechanism of anticancer action of ${\omega}3-PUFAs$, showing that they suppressed invasion and tumorigenicity in colon cancer cells. Docosahexaenoic acids (DHA) inhibited the cell growth of HT29 cells. This action likely involved apoptosis, given that the DHA treatment increased the cleaved form of PARP and sub G1 cells. Moreover, the invasiveness of HT29 cells was inhibited following DHA treatment, whereas arachidonic acid (AA) had no effect. The levels of Matrix-metalloproteinase-9 (MMP-9) and MMP-2 mRNA decreased after DHA pretreatment. DHA treatment inhibited MMP-9 and MMP-2 promoter activities and reduced VEGF promoter activity. DHA pretreatment also inhibited the activities of prostaglandin-2 (PGE2)-induced MMPs and the VEGF promoter. Cyclooxygenase-2 (COX-2) overexpression increased the activity of MMPs and that of the Vascular endotherial growth factor (VEGF) promoter in HT29 cells, and DHA inhibited NF-kB and COX-2 promoter reporter activities. As shown by in vivo experiments, when mouse colon cancer cells (MCA38) were implanted into Fat-1 and wild-type mice, both the tumoral size and volume were dramatically inhibited in Fat-1 transgenic mice. Furthermore, TUNEL-positive cells increased in tumors from Fat-1 mice compared with wild mice. In immunohistochemistry, the intensity of CD31 in Fat-1 tumors was weaker. These findings suggest that ${\omega}3-PUFAs$ may inhibit tumorigenicity and angiogenesis as well as cancer cell invasion by suppression of COX-2, MMPs and VEGF via the reduction of NF-kB in colon cancer.