• Title/Summary/Keyword: Apoptosis

Search Result 5,572, Processing Time 0.038 seconds

Effects of Zizyphi Spinosae Extract on Cisplatin and t-Butylhydroperoxide Induced Acute Renal Failure in Rabbits (토끼에서 cisplatin에 의해 유도된 급성 신부전시 산조인 추출물의 효과)

  • Kim, Jae Young;Kim, Chung Hui
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.777-783
    • /
    • 2014
  • Cathepsin D (CtsD), an aspartyl peptidase, is involved in apoptosis, resulting in the release of cytochrome C from mitochondria in cells. Here, we investigated microRNA regulation of CtsD expression in 3T3-L1 cells. First, we observed the expression of CtsD in cells in response to doxorubicin (Dox). As expected, the level of CtsD mRNA increased in 3T3-L1 cells exposed to Dox in a dose-dependent manner. The cellular viability of ectopically expressed CtsD cells was decreased. Next, we used the miRanda program to search for particular microRNA targeting CtsD. MiR-145 was selected as a putative controller of CtsD because it had a high mirSVR score. In a reporter assay, the luciferase activity of cells containing the CtsD 3'-UTR region decreased in cells transfected with a miR-145 mimic compared to that of a control. The level of CtsD expression was down-regulated in preadipocytes ectopically expressing miR-145 and up-regulated by an miR-145 inhibitor. Cells also suppressed miR-145 expression when exposed to Dox. The miR-145 inhibitor reduced the cellular viability of 3T3-L1 cells. Taken together, these data suggest that miR-145 regulates CtsD-mediated cell death in adipocytes. These findings may have valuable implications concerning the molecular mechanism of CtsD-mediated cell death in obesity, suggesting that CtsD could be a useful therapeutic tool for the prevention and treatment of obesity by regulating fat cell numbers.

Protective Effects of Bifidobacterium bifidum Culture Supernatants and Intracellular Cell-Free Extracts on Human Dermal Fibroblasts against UV-B Irradiation (인간 진피섬유아세포에서 Bifidobacterium bifidum 배양액 및 추출액의 자외선B에 대한 보호 효능)

  • Gwon, Gi Yeong;Park, Gwi Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.801-808
    • /
    • 2017
  • The present study investigated the protective effects of Bifidobacterium bifidum culture supernatants (BbSC) and intracellular cell-free extracts (BbICFE) on human dermal fibroblasts (HDFs) against ultraviolet-B (UV-B) irradiation. HDFs were treated with UV-B, UV-B+BbCS, and UV-B+BbICFE. Treatment of UV-B-irradiated HDFs with BbCS and BbICFE significantly increased cell viability compared to UV-B-irradiated HDFs. BbCS treatment reduced senescence in HDFs by approximately 40.0%. Moreover, sub-G1 phase was significantly reduced in BbCS- and BbICFE-treated HDFs (3.3% and 4.5%, respectively). The effect of UV-B on oxidative damage of HDFs was measured by dichlorofluorescin diacetate. Fluorescence intensity significantly increased in UV-B-irradiated HDFs. Inhibition of cellular reactive oxygen species in HDFs treated with 0.01% BbCS was the highest at 34.1%. Levels of p21 and p53 protein expression induced by UV-B irradiation were reduced by treatment with BbCS and BbICFE (47.0% and 35.6%, respectively). These results show that BbCS and BbICFE reduce UV-B-induced cellular senescence and apoptosis in HDFs. Thus, BbCS and BbICFE can be used as potential agents for protection of UV-B-induced skin cell damage.

Effects of Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang) and Electrical Acupuncture on the Spinal Nerve Injury and the Motor Function (양혈장근건보탕(養血壯筋健步湯)과 전침의 병용치료가 손상된 척수신경 및 운동기능에 미치는 영향)

  • Sul, Jae-Uk;Chu, Min-Kyu;Kim, Sun-Jong;Choi, Jin-Bong;Shin, Mi-Suk;Kim, Soo-Ik
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.2
    • /
    • pp.1-25
    • /
    • 2009
  • Objectives : The purpose of this study was to investigate the effects of Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang, YGKT) and electrical acupuncture treatment in spinal cord injury(SCI)-induced rats. Methods : The subjects were divided into 5 groups ; Normal, Control-no treatment after SCI, Experimental I(Exp. I)-taken with YGKT 500 mg/kg $0.5m{\ell}$ daily after SCI. Experimental II(Exp. II)-taken with electrical acupuncture after SCI and Experimental III(Exp. III)-taken with YGKT 500 mg/kg $0.5m{\ell}$ and electrical acupuncture after SCI. After each operation, the present author observed cytological changes, the motor behavior recovery and nerve regeneration by analysis of the motor behavior tests, EMG, hematological(AST, ALT, WBC), histological and immunological changes. Rats were tested by Motor behavior test at 1st, 3rd, 7th, 14th and 21st day. Results : 1. All the experimental groups were improved compared with control group in the motor behavior tests including Tarlov test, Basso-Beattle-Bresnahan locomotor rating scale, modified inclined plane test, open field test, grid walk test and narrow beam test. Especially Exp. III was significantly improved among other groups. 2. In EMG test, H and M wave were significantly increased in Exp. III. 3. All the experimental groups were significantly decreased compared with control group in AST, ALT and WBC. 4. NGF, BDNF and Trk B of spinal cord gray matter in all the experimental groups were increased compared with control group. Especially, Exp. III was more effective. 5. In histological observations, muscle contraction and denaturation of gastrocnemius muscle of all the experimental groups were inhibited. Especially, those of Exp. III was more effective. On the observations of liver and kidney, cell atrophy and apoptosis of all the experimental groups were decreased compared with control group. Especially, those of Exp. III was more effective. Conclusions : It can be suggested that YGKT and electrical acupuncture may improve motor behavior, EMG, hematological, histological and immunological findings in SCI-induced rats. Especially, combination of these two treatments will be somewhat better in spinal nerve recovery and motor function improvement.

Effects of Tumor Microenvironmental Factors on DNA Methylation and Radiation Sensitivity in A549 Human Lung Adenocarcinoma

  • Oh, Jung-Min;Kim, Young-Eun;Hong, Beom-Ju;Bok, Seoyeon;Jeon, Seong-Uk;Lee, Chan-Ju;Park, Dong-Young;Kim, Il Han;Kim, Hak Jae;Ahn, G-One
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.66-74
    • /
    • 2018
  • Background: Tumor response to anticancer therapies can much be influenced by microenvironmental factors. In this study, we determined the effect of these microenvironmental factors on DNA methylation using A549 human lung adenocarcinoma cell line. Materials and Methods: We subjected A549 cells to various conditions mimicking tumor microenvironment including hypoxia, acidosis (sodium lactate), oxidative stress ($H_2O_2$), bystander effect (supernatant from doxorubicin (Dox)-treated or irradiated cells), and immune cell infiltration (supernatant from THP-1 or Jurkat T cells). Genomic DNA was isolated from these cells and analyzed for DNA methylation. Clonogenic cell survival, gene expression, and metabolism were analyzed in cells treated with some of these conditions. Results and Discussion: We found that DNA methylation level was significantly decreased in A549 cells treated with conditioned media from Dox-treated cells or Jurkat T cells, or sodium lactate, indicating an active transcription. To determine whether the decreased DNA methylation affects radiation sensitivity, we exposed cells to these conditions followed by 6 Gy irradiation and found that cell survival was significantly increased by sodium lactate while it was decreased by conditioned media from Dox-treated cells. We further observed that cells treated with conditioned media from Dox-treated cells exhibited significant changes in expression of genes including BAX and FAS (involved in apoptosis), NADPH dehydrogenase (mitochondria), EGFR (cellular survival) and RAD51 (DNA damage repair) while sodium lactate increased cellular metabolism rather than changing the gene expression. Conclusion: Our results suggest that various tumor microenvironmental factors can differentially influence DNA methylation and hence radiosensitivity and gene expression in A549 cancer cells.

Enrichment and verification of differentially expressed miRNAs in bursa of Fabricius in two breeds of duck

  • Luo, Jun;Liu, Junying;Liu, Hehe;Zhang, Tao;Wang, Jiwen;He, Hua;Han, Chunchun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.920-929
    • /
    • 2017
  • Objective: The bursa of Fabricius (BF) is a central humoral immune organ belonging specifically to avians. Recent studies had suggested that miRNAs were active regulators involved in the immune processes. This study was to investigate the possible differences of the BF at miRNA level between two genetically disparate duck breeds. Methods: Using Illumina next-generation sequencing, the miRNAs libraries of ducks were established. Results: The results showed that there were 66 differentially expressed miRNAs and 28 novel miRNAs in bursa. A set of abundant miRNAs (i.e., let-7, miR-146a-5p, miR-21-5p, miR-17~92) which are involved in immunity and disease were detected and the predicted target genes of the novel miRNAs were associated with duck high anti-adversity ability. By gene ontology analysis and enriching KEGG pathway, the targets of differential expressed miRNAs were mainly involved in immunity and disease, supporting that there were differences in the BF immune functions between the two duck breeds. In addition, the metabolic pathway had the maximum enriched target genes and some enriched pathways that were related to cell cycle, protein synthesis, cell proliferation and apoptosis. It indicted that the difference of metabolism may be one of the reasons leading the immune difference between the BF of two duck breeds. Conclusion: This data lists the main differences in the BF at miRNAs level between two genetically disparate duck breeds and lays a foundation to carry out molecular assisted breeding of poultry in the future.

The Effects and Mechanisms of Glycolic Acid on the UV-induced Skin Cell Proliferation (UV에 대한 Glycolic Acid의 피부세포증식 기전연구 및 억제효과)

  • Hong, Jin-Tae;Lee, Hwa-Jeong;Lee, Chung-Woo;Ahn, Kwang-Soo;Yun, Yeo-Pyo;Pyo, Heung-Bae;Cho, Chan-Hwi;Hong, Ki-Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.3 s.52
    • /
    • pp.219-236
    • /
    • 2005
  • Glycolic acid, an alpha-hydroxy acid derived from fruit and milk sugars, has been commonly used as a cosmetic ingredient since it was known to have photo-protective, anti-inflammatory effects, and anti-oxidant effect in UV-irradiated skin. However, little has been know about the functional role of glycolic acid on UV-induced skin cell proliferation. It was previously found that glycolic acid inhibited UV-induced skin tumor development in hairless mouse. As a possible mechanism of glycolic acid on the UV-induced skin tumor development, the ability of glycolic acid to inhibit the UVB-induced cell growth and possible mechanisms were investigated. Glycolic acid treatment attenuated the UV-induced cell proliferation and apoptotic cell death in the skin. In vitro study, glycolic acid inhibited the UVB-induced cell growth and apoptotic death through inhibiting caspase-3 activity. These results suggest that glycolic acid may exert the Inhibitory effect on the UVB-induced skin tumor development by regulating cell growth and apoptotic cell death.

Anti-colorectal Cancer and Anti-oxidant Activities of Rubiae radix Ethanol Extract in vitro (천초근 에탄올 추출물의 항산화 효능 및 대장암 세포 억제 효과)

  • Nho, Jong Hyun;Sim, Mi Ok;Jung, Ho Kyung;Lee, Mu Jin;Jang, Ji Hun;Jung, Da Eun;Sung, Tae Kyoung;An, Byeong Kwan;Cho, Hyun Woo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2018
  • Rubiae radix is root of Runia akane Nakai, it has been used to hemostasis and blood stasis in Korean and China. This study investigated that anti-oxidant and anti-colorectal cancer effect of ERA (ethanol extract of Rubiae radix) and WRA (water extract of Rubiae radix) using RAW 264.7 (murine macrophage from blood) and HCT-116 cells (human colorectal cancer cell line). ERA contained polyphenol ($45.77{\pm}2.03mg/g$) and flavonoid ($22.82{\pm}1.33mg/g$). $500{\mu}M$ $H_2O_2$-induced ROS generation was diminished by $500{\mu}g/m{\ell}$ ERA treatment in RAW 264.7 cells, but not WRA (125, 250, and $500{\mu}g/m{\ell}$). Moreover, caspase-3 activity and DNA fragmentation increased by $500{\mu}g/m{\ell}$ ERA treatment during apoptotic cell death in HCT-116. Results demonstrated that anti-cancer effect of ERA against human colorectal cancer cells is mediated apoptotic cell death and DNA fragmentation through caspase-3 activation. However, further study is required to what active ingredient of ERA are important for anti-oxidant and anti-colorectal cancer effect in vivo.

Agastache rugosa Leaf Extract Inhibits the iNOS Expression in ROS 17/2.8 Cells Activated with TNF-$\alpha$ and IL-$\beta$

  • Oh Hwa Min;Kang Young Jin;Kim Sun Hee;Lee Young Soo;Park Min Kyu;Heo Ja Myung;Sun Jin Ji;Kim Hyo Jung;Kang Eun Sil;Kim Hye Jung;Sea Han Geuk;Lee Jae Heun;YunChoi Hye Sook
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.305-310
    • /
    • 2005
  • It has been suggested that nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) may act as a mediator of cytokine-induced effects on bone turn-over. NO is also recognized as an important factor in bone remodeling, i.e., participating in osteoblast apoptosis in an arthritic joint. The components of Agastache rugosa are known to have many pharmacological activities. In the present study, we investigated the effects of Agastache rugosa leaf extract (ELAR) on NO production and the iNOS expression in ROS 17/2.8 cells activated by a mixture of inflammatory cytokines including TNF-$alpha$ and IL-1$\beta$. A preincubation with ELAR significantly and concentration-dependently reduced the expression of iNOS protein in ROS 17/2.8 cells activated with the cytokine mixture. Consequently, the NO production was also significantly reduced by ELAR with an IC$_{50}$ of 0.75 mg/mL. The inhibitory mechanism of iNOS induction by ELAR prevented the activation and translocation of NF-$\kappa$B (p65) to the nucleus from the cytosol fraction. Furthermore, ELAR concentration-dependently reduced the cellular toxicity induced by sodium nitroprusside, an NO-donor. These results suggest that ELAR may be beneficial in NO-mediated inflammatory conditions such as osteoporosis.

Cellular and Molecular Roles of $\beta$ Cell Autoantigens, Macrophages and T Cells in the Pathogenesis of Automimmune Diabetes

  • Yoon, Ji-Won;Jun, Hee-Sook
    • Archives of Pharmacal Research
    • /
    • v.22 no.5
    • /
    • pp.437-447
    • /
    • 1999
  • Type I diabetes, also known as insulin-dependent diabetes mellitus (IDDM) results from the destruction of insulin-producing pancreatic $\beta$ cells by a progressive $\beta$ cell-specific autoimmune process. The pathogenesis of autoimmune IDDM has been extensively studied for the past two decades using animal models such as the non-obese diabetic (NOD) mouse and the Bio-Breeding (BB) rat. However, the initial events that trigger the immune responses leading to the selective destruction of the $\beta$ cells are poorly understood. It is thought that $\beta$ cell auto-antigens are involved in the triggering of $\beta$ cell-specific autoimmunity. Among a dozen putative $\beta$ cell autoantigens, glutamic acid decarboxylase (GAD) has bee proposed as perhaps the strongest candidate in both humans and the NOD mouse. In the NOD mouse, GAD, as compared with other $\beta$ cell autoantigens, provokes the earliest T cell proliferative response. The suppression of GAD expression in the $\beta$ cells results in the prevention of autoimmune diabetes in NOD mice. In addition, the major populations of cells infiltrating the iselts during the early stage of insulitis in BB rats and NOD mice are macrophages and dendritic cells. The inactivation of macrophages in NOD mice results in the prevention of T cell mediated autoimmune diabetes. Macrophages are primary contributors to the creation of the immune environment conducive to the development and activation of $\beta$cell-specific Th1-type CD4+ T cells and CD8+ cytotoxic T cells that cause autoimmune diabetes in NOD mice. CD4+ and CD8+ T cells are both believed to be important for the destruction of $\beta$ cells. These cells, as final effectors, can kill the insulin-producing $\beta$ cells by the induction of apoptosis. In addition, CD8+ cytotoxic T cells release granzyme and cytolysin (perforin), which are also toxic to $\beta$ cells. In this way, macrophages, CD4+ T cells and CD8+ T cells act synergistically to kill the $\beta$ cells in conjunction with $\beta$ cell autoantigens and MHC class I and II antigens, resulting in the onset of autoimmune type I diabetes.

  • PDF

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.