• Title/Summary/Keyword: Apollonius′ 10th problem

Search Result 2, Processing Time 0.016 seconds

Unifying Method for Computing the Circumcircles of Three Circles

  • Kim, Deok-Soo;Kim, Dong-Uk;Sugihara, Kokichi
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • Given a set of three generator circles in a plane, we want to find a circumcircle of these generators. This problem is a part of well-known Apollonius' $10^{th}$ Problem and is frequently encountered in various geometric computations such as the Voronoi diagram for circles. It turns out that this seemingly trivial problem is not at all easy to solve in a general setting. In addition, there can be several degenerate configurations of the generators. For example, there may not exist any circumcircle, or there could be one or two circumcircle(s) depending on the generator configuration. Sometimes, a circumcircle itself may degenerate to a line. We show that the problem can be reduced to a point location problem among the regions bounded by two lines and two transformed circles via $M{\ddot{o}}bius$ transformations in a complex space. The presented algorithm is simple and the required computation is negligible. In addition, several degenerate cases are all incorporated into a unified framework.

The Computation of the Voronoi Diagram of a Circle Set Using the Voronoi Diagram of a Point Set: II. Geometry (점 집합의 보로노이 다이어그램을 이용한 원 집합의 보로노이 다이어그램의 계산: II.기하학적 측면)

  • ;;;Kokichi Sugihara
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • Presented in this paper are algorithms to compute the positions of vertices and equations of edges of the Voronoi diagram of a circle set. The circles are located in a Euclidean plane, the radii of the circles are not necessarily equal and the circles are not necessarily disjoint. The algorithms correctly and efficiently work when the correct topology of the Voronoi diagram was given. Given three circle generators, the position of the Voronoi vertex is computed by treating the plane as a complex plane, the Z-plane, and transforming it into another complex plane, the W-plane, via the Mobius transformation. Then, the problem is formulated as a simple point location problem in regions defined by two lines and two circles in the W-plane. And the center of the inverse-transformed circle in Z-plane from the line in the W-plane becomes the position of the Voronoi vertex. After the correct topology is constructed with the geometry of the vertices, the equations of edge are computed in a rational quadratic Bezier curve farm.

  • PDF