• Title/Summary/Keyword: Apicularen A

Search Result 2, Processing Time 0.016 seconds

Apicularen A, a Macrolide from Chondromyces sp., Inhibits Growth Factor Induced In Vitro Angiogenesis

  • Kwon, Ho-Jeong;Kim, Dong-Hoon;Shim, Joong-Sub;Ahn, Jong-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.702-705
    • /
    • 2002
  • Apicularen A (Api A) was recently isolated from Chondromyces sp. as a potent antitumor agent. Because of its unique chemical structure, a macrolide with a highly unsaturated amide side chain, and potent growth inhibitory effect in various cancer cell lines, Api A is currently in clinical trial for cancer therapy. In the present study, the effect of Api A on in vitro angiogenesis of bovine aortic endothelial cells (BAECS) was investigated. Api A potently inhibited the proliferation of BAECS in a dose-dependent manner. Treatment of the endothelial cells with up to 10 ng/ml of the compound did not show any cytotoxicity. In addition, it inhibited basic fibroblast growth factor (bFGF)-induced invasion and capillary tube formation of BAECS at concentrations of 2-5 ng/ml. These results, therefore, demonstrate that Apl A is a novel antiangiogenic agent and may suppress the growth of tumors, at least in part, by the inhibition of neovascularization.

Formal synthesis of core unit of apicularen A and its synthetic derivatives

  • Lee, Min-Jung;Kim, Ji-Duck;Zee, Ok-Pyo;Jung, Young-Hoon;Ahn, Jong-Woong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.171.2-172
    • /
    • 2003
  • Over the past few years, a variety of macrocyclic salicylate natural products have been isolated from both terrestrial and marine sources based on their ability to induce a particular phenotype in mammalian cells. Extracts of the myxobacterium Chondromyces showed high cytotoxicity against cultivated mammalian cells and bio-guided fractionation revealed the cytotoxicity was due to one main metabolite identified as the novel macrolide apicularen A. Beginning to understand the molecular basis for these distinct activities will require structure-function correlation studies and the development of synthetic chemistry in this area. (omitted)

  • PDF