• Title/Summary/Keyword: Aperture-Coupled Microstrip Antenna

Search Result 63, Processing Time 0.026 seconds

Field Configurations in Aperture-Coupled Microstrip Antenna Structure (개구 결합 마이크로스트립 안테나 구조에서의 필드 분포)

  • 조영기;고지환;이영순;허유강
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.259-262
    • /
    • 2002
  • The problems of electromagnetic coupling and radiation in an aperture-coupled microstrip antenna structure are discussed while focusing on the difference between two representative field configuration: parasitic-type and cavity-type. Based on the discussion, a critical look is taken at the validity of a previous description of the coupling mechanism of m aperture-coupled microstrip antenna.

  • PDF

Effect of Adjustable Antenna Substrate Thickness on Aperture-Coupled Microstrip Antenna

  • Somsongkul, T.;Lorpichian, A.;Janchitrapongvej, K.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1664-1667
    • /
    • 2003
  • Aperture-coupled microstrip antenna is one type of microstrip antennas. This type of antenna has bandwidth wider than simple microstrip antenna. Herein, we use two substrates, that have the same dielectric constant 2.47 (PTFE-quartz) in which upper substrate is a rectangular patch. The microstrip patch is fed by a microstrip line which is printed on lower substrate, through an aperture or slot in the common ground plane of patch and microstrip feed. This antenna is analyzed by using Finite Difference Time Domain (FDTD) method the specific design frequency 10 GHz and match impedance is 50 ohms. The simulation results of its characteristics are input impedance, return loss, VSWR and radiation patterns respectively.

  • PDF

Electromagnetic Coupling Mechanism in the Aperture-Coupled and Feedline Gap-Coupled Microstrip Patch Antenna (Aperture와 Feedline Gap 결합으로 급전되는 마이크로스트립 패치 안테나의 전자기 결합 메커니즘)

  • Kim, Jong-Kyu;Yoon, Lee-Geun;Cho, Young-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • This article describes an observation that the aperture coupling mechanisms in the aperture coupled microstrip antenna can be divided into two categories, cavity and parasitic types, depending on the separation between the microstrip patch and the ground plane. The similar phenomenon was observed in the relatively simple gap coupled microstrip antenna. The specific characteristics between two coupling mechanisms is discussed.

  • PDF

Design and Fabrication of a Microstrip Patch Antenna with H-shape Aperture-Coupled structure for PCS Repeater (H자형 개구 결합구조를 갖는 PCS 중계기용 마이크로스트립 패치 안테나 설계 및 제작)

  • Lee, Jung-Gi;Jeoung, Chan-Gwoun;Kang, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.465-470
    • /
    • 2007
  • This paper is designed and producted the microstrip patch antenna which used aperture coupled feed structure, and had a comparatively hish gain and headband characteristic with a PCS substitution repeater antenna. The proposed antenna transformed a coupled slot into a H-type in order to improve a characteristic of a general aperture coupled feed antenna. It is this H-type form slot reduces back lobe from the antenna backside at the same time that a coupling between a power feed and patches is iccreased, and to have maximized a gain of an antenna. As a result of having measured the antenna which the VSWR was 1.5 or below and tied up the gain than 7.5dBi in the $1750{\sim}1870$[MHz] that was a PCS substitution, and a beamwidth became in $80^{\circ}$ and radio waves shadow was local, but accomplishment did PCS mobile communication service in building me smoothly, but confirmed what practical use can become.

A Series Feeding Cross-Aperture Coupled Microstrip Antenna for Improving Axial Ratio Bandwidth of Circular Polarization (원형편파의 축비 대역폭 개선을 위한 직렬 급전 십자개구 결합 마이크로스트립 안테나)

  • 김형락;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.393-400
    • /
    • 2002
  • In this paper, a novel series feeding cross-aperture coupled microstrip antenna with the effect of hybrid feeding is proposed and demonstrated experimentally to improve narrow axial ratio bandwidth of cross-aperture coupled antenna with single feeding among the various methods for generating circular polarization. The validity of a proposed series feeding cross-aperture coupled microstrip antenna is shown by comparing experimental results between the reported and the proposed microstrip antenna, and 2${\times}$2 array microstrip antenna based on the proposed single microstrip antenna used sequential rotation technique to accomplish broader axial ratio bandwidth. In the proposed single and 2${\times}$2 array microstrip antenna, the measured axial ratio bandwidths are 110 ㎒(4.6%) and 420 ㎒(17.5%), maximum gains are 8.2 ㏈i and 12.5 ㏈i, 3 dB gain bandwidths are above 400 ㎒(16.7%), and impedance bandwidths for the VSWR<1.5 are 240 ㎒(10%) and 500 ㎒(20.8%), respectively.

Aperture Coupled and 3-D Transition Microstrip Line Fed Dual Polarization Rectangular Microstrip Antenna (개구결합 및 3차원 천이 마이크로스트립 선로로 급전되는 이중편파 사각형 마이크로스트립 안테나)

  • 조성문;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1034-1039
    • /
    • 2002
  • In this paper, the design of a dual-polarization rectangular microstrip patch antenna with high isolation between two feeding ports excited by using both an aperture-coupled feed (port 1) and a 3-dimensional microstrip feed (port 2) is presented. From the simulation using the commercial program IE3D, the optimum values of the antenna parameters are investigated at both two feed structures and the optimum antenna is designed and fabricated. Experimental results confirmed that an bandwidth of the antenna is about 17 % and the isolation of two ports is great than 30 dB over all frequency bands.

A Broadband U-Slot Microstrip Antenna (광대역 특성을 갖는 U-슬롯 마이크로스트립 안테나)

  • 홍재표;이광호;김종규;이창순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.6-11
    • /
    • 2001
  • In this paper, the aperture-coupled U-slot microstrip patch antenna is studied for the bandwidth improvement. The aperture is used as a mechanism for coupling the radiating element to the microstrip feedline, and the aperture-coupled configuration provides the advantage of isolating spurious feed radiation by the use of common ground plane. Experimental results such as return loss, VSWR, radiation pattern and gain measurements are presented on the aperture-coupled U-slot microstrip patch antenna. The impedance bandwidth (VSWR≤2) of the antenna is 6.4% centered at 2.35GHz, and the average gain is 5.3 dBi.

  • PDF

The sideband Microstrip Patch Antenna with L-shaped Aperture (L자형 개구면을 갖는 광대역 마이크로스트림 패치 안테나)

  • Shin, Ho-Sub;kim, Nam;Jang, Yong-Woong;Rhee, Seung-Yup
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.350-353
    • /
    • 2000
  • In this paper, we designed the microstrip patch antenna with L-shaped aperture, which greatly enhances its bandwidth. We optimized to get a maximum bandwidth. The microstrip patch antenna with L-shaped aperture has the widest bandwidth of the conventional aperture coupled microstrip patch antenna. This antenna also has the low-cross polarization level. The effects of changing several key design parameters of the antenna are investigated. We calculated the VSWR, input impedance, and radiation pattern.

  • PDF

Effect of Feed Substrate Thickness on the Bandwidth and Radiation Characteristics of an Aperture-Coupled Microstrip Antenna with a High Permittivity Feed Substrate

  • Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA) with a high permittivity (${\varepsilon}_r=10$) feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC) are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.

The Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using Variation of an Aperture Width (개구면 폭 변화를 이용한 개구면 결합 마이크로스트립 패치 안테나의 대역폭 확장)

  • Kim, Jae-Hyun;Koo, Hwan-Mo;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.48-58
    • /
    • 2015
  • The bandwidth enhancement of an aperture coupled microstrip patch antenna(ACMPA) with a high permittivity feed substrate suitable for the integration with MMIC is investigated using variation of an aperture width. As an aperture width increases, the 10 dB return loss bandwidth increases due to the increase of the mutual resonance region between a patch resonance and an aperture resonance. The bandwidth of an ACMPA with extended aperture width is increased up to 35.3 % from 20.8 % of the ACMPA with an aperture of a typical aspect ratio 10:1. The degradation of the radiation characteristics of an ACMPA due to the increase of an aperture width is very small.