• Title/Summary/Keyword: Aperture Field Method

Search Result 116, Processing Time 0.028 seconds

Study on Structural and Electromagnetic Nonlinearities for Improving Dynamic Characteristics of Pickup Actuator (Pickup Actuator의 구동특성 향상을 위한 구조, 자기 비선형성에 대한 고찰)

  • Lee, Jong-Jin;Kim, Jae-Eun;Hong, Sam-Nyol;Ko, Eui-Seok;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.709-711
    • /
    • 2006
  • According as optical storage becomes high-density, numerical aperture increases. Therefore, the shift characteristic of moving parts in an actuator for optical pickup becomes a critical design factor because of decrease in the tilt margin. The tilt angle is maximized when the position of moving parts is in a diagonal direction within a moving range. This is determined by design of structure and magnetic circuit of an actuator. Previous analysis method only predicts linear characteristics of moving parts. However, the result of shift characteristics of the moving parts considering structural and magnetic circuit's nonlinearity following the every position simultaneously shows us more realistic result. Therefore, we present analysis method considering nonlinearity of moving parts' position through FEM package using coupled-field analysis. Then, we will suggest hereafter a design guide by comparing the above results with experimental ones.

  • PDF

Reduction Characteristics of Electromagnetic Penetration Through Narrow Slots by Resistive Sheet Loading (평행 손실판 장하에 의한 슬릿 침투 전자파의 저감 특성)

  • Cho, Jun-Ho;Park, Eun-Jung;Kim, Kyung-Bong;Kim, Ki-Chai
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.214-217
    • /
    • 2007
  • This paper presents a reduction method of penetrated electromagnetic fields through a narrow slot with resistive sheet in a planar conducting screen of infinite extent. When a plane wave is excited to the narrow slot, the aperture electric field is controlled by the parallel plates connected on the slot. The magnitude of penetrated electromagnetic fields through the narrow slot is controlled by the electric field distribution on the slot. The results show that the magnitude of the penetrated electromagnetic field can be effectively reduced by installing the resistive plates on the slot.

  • PDF

Super-resolution Reconstruction Method for Plenoptic Images based on Reliability of Disparity (시차의 신뢰도를 이용한 플렌옵틱 영상의 초고해상도 복원 방법)

  • Jeong, Min-Chang;Kim, Song-Ran;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.425-433
    • /
    • 2018
  • In this paper, we propose a super-resolution reconstruction algorithm for plenoptic images based on the reliability of disparity. The subperture image generated by the Flanoptic camera image is used for disparity estimation and reconstruction of super-resolution image based on TV_L1 algorithm. In particular, the proposed image reconstruction method is effective in the boundary region where disparity may be relatively inaccurate. The determination of reliability of disparity vector is based on the upper, lower, left and right positional relationship of the sub-aperture image. In our method, the unreliable vectors are excluded in reconstruction. The performance of the proposed method was evaluated by comparing to a bicubic interpolation method, a conventional disparity based method and dictionary based method. The experimental results show that the proposed method provides the best performance in terms of PSNR(Peak Signal to noise ratio), SSIM(Structural Similarity).

Accurate quantitative assessment of grouting efficiency in fractured rocks by evaluating the aperture sizes of fractures (절리암반내 그라우팅 성과에 대한 정량적인 판단기법 개발)

  • 김중열;김유성;김형수;백건하;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.695-702
    • /
    • 2002
  • Groundwater flow is primarily influenced by the presence of fractures, functioning as conduits. To block the flow, grouting operation is commonly used. Thereby the fractures are then expected to be sealed, which will add to enhance the shear strength in rock. This far, regarding the assessment of grouting efficiency, however, there's been a considerable uncertainty That is, several geophysical methods of high resolution such as tomography, S-wave logging have produced a significant amount of measurable response caused by grouting, but they can inevitably be used only for the qualitative assessment. Thus, this paper deals with an accurate quantitative assessment about the grouting result. In this, a new strategy is introduced, based mainly on evaluating the opening of fractures. For fracture-opening investigation purposes, borehole Televiewer has already proven to be an excellent logging technique that produces both amplitude image and traveltime image. As well known, the traveltime image can be converted to a high precision 3D caliper log with max. 288 arms, which allows to observe the opening of fractures. To evaluate the fracture opening from the traveltime image, an algorithm of practical use was developed, in which image correction due to the borehole deviation, feature discrimination of wall roughness from fractures, automatic evaluation procedure etc. were considered. Field examples are shown to confirm the efficiency of the suggested method.

  • PDF

Design of the Non-Resonant SWG Antenna with Double Slots in the Narrow Wall of Rectangular Waveguide (구형 도파관의 협벽에 이중 슬롯을 가진 비공진형 슬롯 도파관 안테나의 설계)

  • Hur, Moon-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.106-113
    • /
    • 2011
  • In this paper, the non-resonant SWG(Slotted Waveguide) antenna with double slots in narrow wall of rectangular waveguide is designed. Because energy radiated from each slot depends upon inclination angle of slot of the designed antenna, inclination angle of each slot is controlled to satisfy the amplitude distribution for required sidelobe level. Instead of the conventional extraction method of slot conductance, this amplitude distribution is made by the proposed method, which employs far-field radiation pattern calculated by Fourier transform of aperture field distribution on slot. The non-resonant double SWG antenna is designed by the proposed method and is manufactured. The antenna performances are measured and compared with the simulated results.

A Study on Field Evaluation and Sound Insulation Improvement of Door (도어 차음성능 현장 평가 및 개선방안에 관한 연구)

  • Oh, Jin Kyun;Lee, Won Yeul;Yum, Sung Gon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.1012-1019
    • /
    • 2013
  • Recently, awareness of noise is increased and high performance sound insulation performance wall is designed. But in spite of installing high performance sound insulation performance wall, sound insulation performance in space is reduced by door. In this study, Sound insulation performance of doors which commonly used in buildings was measured to analyze current situation in the field and effect of method which increase sound insulation performance is analyzed quantitatively. As a result, sound insulation performance of doors which commonly used in buildings is FSTC 17~29 and can be increased about 2~3 dB by install rubber seal or mohair.

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

Application of a deep learning algorithm to Compton imaging of radioactive point sources with a single planar CdTe pixelated detector

  • Daniel, G.;Gutierrez, Y.;Limousin, O.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1747-1753
    • /
    • 2022
  • Compton imaging is the main method for locating radioactive hot spots emitting high-energy gamma-ray photons. In particular, this imaging method is crucial when the photon energy is too high for coded-mask aperture imaging methods to be effective or when a large field of view is required. Reconstruction of the photon source requires advanced Compton event processing algorithms to determine the exact position of the source. In this study, we introduce a novel method based on a Deep Learning algorithm with a Convolutional Neural Network (CNN) to perform Compton imaging. This algorithm is trained on simulated data and tested on real data acquired with Caliste, a single planar CdTe pixelated detector. We show that performance in terms of source location accuracy is equivalent to state-of-the-art algorithms, while computation time is significantly reduced and sensitivity is improved by a factor of ~5 in the Caliste configuration.

SAR Image De-noising Based on Residual Image Fusion and Sparse Representation

  • Ma, Xiaole;Hu, Shaohai;Yang, Dongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3620-3637
    • /
    • 2019
  • Since the birth of Synthetic Aperture Radar (SAR), it has been widely used in the military field and so on. However, the existence of speckle noise makes a good deal inconvenience for the subsequent image processing. The continuous development of sparse representation (SR) opens a new field for the speckle suppressing of SAR image. Although the SR de-noising may be effective, the over-smooth phenomenon still has bad influence on the integrity of the image information. In this paper, one novel SAR image de-noising method based on residual image fusion and sparse representation is proposed. Firstly we can get the similar block groups by the non-local similar block matching method (NLS-BM). Then SR de-noising based on the adaptive K-means singular value decomposition (K-SVD) is adopted to obtain the initial de-noised image and residual image. The residual image is processed by Shearlet transform (ST), and the corresponding de-noising methods are applied on it. Finally, in ST domain the low-frequency and high-frequency components of the initial de-noised and residual image are fused respectively by relevant fusion rules. The final de-noised image can be recovered by inverse ST. Experimental results show the proposed method can not only suppress the speckle effectively, but also save more details and other useful information of the original SAR image, which could provide more authentic and credible records for the follow-up image processing.

Magneto-Optical Recording in Near-Field using Elliptic Solid Immersion Lens (타원형 고체잠입렌즈를 이용한 근접장 광자기 기록)

  • 박재혁;이문도;박노철;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.678-681
    • /
    • 2003
  • In conventional optical data storage numerical aperture (NA) cannot be over 1 because of diffraction limit. To overcome this limitation. solid immersion lens(SIL) have produced a great interest in near-field optical data storage. In conventional optical recording method, the dual lens system using object lens and SIL had been studied generally. But the conventional SIL system has some critical problems that must be solved. The problems are heat, contamination. alignment of optical components and so on. To solve these problems. this work proposes enhanced SIL which has several advantages for mechanical and optical issues. This new SIL system named elliptic SIL(ESIL) can use evanescent energy in near-field more effectively. In addition. because of applying the inside recording unlike previous surface recording, ESIL can clear up the problems. The design and analysis of ESIL art executed by using CODE V. Also, in this paper we composed actual data recording system and achieved recording experiment by applying ESIL to magneto-optical recording. In conclusion. we analyze the improvement of aerial density and the reasonability of application to real data storage system.

  • PDF