• Title/Summary/Keyword: Antiwashout Underwater Concrete

Search Result 61, Processing Time 0.045 seconds

A Study on the $Cl^-$ ion property of antiwashout concrete using the superplasticizer agent (고유동화재를 사용한 수중불분리콘크리트의 Cl 이온 특성고찰)

  • 김동석;최재웅;구본창;하재담;엄태형;신연식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.117-122
    • /
    • 1999
  • The antiwashout concrete which is a type of specific concrete is manufactured by using a plenty of superplasticizer with the non-dispersible underwater concrete admixture, and the application of it on construction site is being increased. But when we measure choride ion content by using the potentiographic tester, because it is over total chloride ion content(0.3kg/㎥ under) of Korean Concrete Specification, the claim of construction site is being presented on the quality of antiwashout concrete. Accordingly, hte aim of this study is to verify actual chloride ion content of antiwashout concrete by chloride ion analysis due to chemical admixtures by performance of antiwashout concrete. In conclusion the actual chloride ion content of antiwashout concrete is overestimated by anion($OH^-, SO4^{-2}, S^{-2}, etc) of chemical admixtures, and is proved to be as low as that of ordinary concrete.

  • PDF

A Study on the Charateristics of Antiwashout Underwater Concrete with Mineral Admixture (광물질 혼화재료를 첨가한 수중불분리성 콘크리트의 특성에 관한 연구)

  • Baek Dong-Il;Kim Myung-Sik;Jang Hee-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.777-783
    • /
    • 2004
  • In this study, for improving of concrete properties, those are used ground granulated blast slag(GGBS) and fly ash(FA). There are some advantage to add the GGBS and FA in plain concrete. The objective of this study is to find the characteristics of fresh and hardened antiwashout underwater concrete which is followed by blended ratio of GGBS and FA. Experimental parameters were chosen that W/C was 50%, S/a was 40% and as the blended ratio of GGBS was set at 0, 10, 20, 30, 40, 50, 60% and FA was set at 0, 10, 15, 20, 25, 30, 35% in order to prove the properties of antiwashout underwater concrete can be changed by blended ratio of GGBS md FA. It was measured pH, suspension and slump flow of fresh antiwashout underwater concrete and compressive strength of hardened antiwashout underwater concrete in age of 7 days, 28 days and 56 days. The experimental results of fresh concrete show that pH, suspension and slump flow were all satisfied with KSCE (Korea Society of Civil Engineering) standard value and mix design standard value. To synthetically consider, the optimum blended ratio is about 30% of GGBS and FA.

High-strength Antiwashout Underwater Concrete Containing the GGBF Slag (고로슬래그 미분말을 혼합한 고강도 수중불분리성 콘크리트)

  • 문한영;송용규;전중규;김태욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.199-202
    • /
    • 1999
  • Recently, the antiwahout underwater concrete with an natiwashout admixture has been increasingly used for underwater structures. However, the credibility of antiwahout underwater concrete was brought up as problems because it was seldom applied to fields. In this study, experiments were made on the basic properties of antiwashout underwater concrete replaced with GGBF Slag from 40% to 60% to improve its properties. Resultant to the test, we got the results as follows; the difference of U-type heght was decreased, and the slump flow was increased. Whereas the amount of suspended solids became high as to increasing the replacement ratio of GGBF Slag, pH value became low. Beacause the ratio of compressive strengths (in water compared to in air) at 28days was obtained over 90%, its value is satisfied with 70% of a criterion.

  • PDF

Fundamental Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures

  • Han-Young, Moon;Kook-Jae, Shin;Yong-Kyu, Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.457-460
    • /
    • 2003
  • This paper discusses laboratory evaluations to assess the physical properties of antiwashout underwater concrete (AWC) containing pozzolanic materials such as fly ash (FA), blast furnace slag (SG) and metakaolin(MK). For the experiments, pH value, suspended solids, slump flow, efflux time and compressive strength were tested. According to the results from compressive strength test, MK10 showed the very high compressive strength characteristic during the entire curing days, but the rate of strength development was decreased as time goes by.

  • PDF

Mechanical and Physical of Antiwashout Underwater Concrete under Different Curing Temperature (양생온도에 따른 수중불분리성 콘크리트의 물리.역학적 특성)

  • 이병덕;원종필;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.301-307
    • /
    • 1997
  • This paper is evaluated for properties of aggregate and antiwashout admixture not only to minimize segregation and water contamination of underwater concrete but also to meet concrete quality required. Two antiwashout admixtures used in this study were available domestically and slump flow, pH, setting time, and filing property of fresh concrete and the compressive strength, flexural strength under water and in the air under 2 different curing conditions ($10^{\cire}C$ and $20^{\cire}C$ ) were measured. Compressive strength ratio of specimens cured in and water temperature $10^{\cire}C$ /$20^{\cire}C$ added HPEC and HPMC was 64% and 89%, respectively. Relative compressive strength of 2 kinds observed higher concrete added HPEC, 3% at $10^{\cire}C$ curing temperature, 34% at $20^{\cire}C$ . The flexural strength of specimens made under water was 1/4~1/6 of compressive strength similar to the existing data in the literature.

  • PDF

Fundamental Properties High-Strength Antiwashout Underwater Concrete (고강도 수중불분리성콘크리트의 기초물성에 대한 연구)

  • Moon, Han-Young;Kim, Seong-Soo;Song, Yong-Kyu;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.195-198
    • /
    • 2000
  • Recently, the anriwashout underwater concrete has been increasingly used for underwater structures such as vary high diaphrame walls of high strength massive concrete structures. In this study, experiments were made on the fundamental properties of antiwashout underwater concrete replaced with Fly Ash from 10% to 30% to improve its properties. Resultant to the test, we got the results as follows; the value of slump flow wasi ncreased, the setting, time was very delayed, and the heat evolution amount decreased, whereas the amount of suspended solids became high, and pH value became low as to increasing the replacement ratio of Fly Ash. Also the ratios of compressive strength (in water compared to in air) at 28day were obtained over 90%, and these values were satisfied with 70% of a criterion.

  • PDF

Properties of Antiwashout Underwater Concrete Using the GGBF Slag (고로슬래그미분말을 활용한 수중불분리성콘크리트)

  • 문한영;김성수;이병덕;이재준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.83-86
    • /
    • 1998
  • Recently, underwater concrete constructions are increasing. Therefore it is considered important to control the quality of underwater concrete. In this paper, we have an intention of evaluating fundamental properties of underwater concrete using the Ground Granulated Blast Furnace Slag (GGBF Slag). Thus, it has been investigated that the slump flow of the concrete, pH value and suspended solids in solution, compressive strength on both of specimens made above and below water. Also the percentage of GGBF Slag was found to alter the filling-up in underwater concrete.

  • PDF

An Experimental Study of Chloride Acceleration on the Seawater Resistance of Fly Ash Antiwashout Underwater Concrete (플라이애쉬 수중불분리성 콘크리트의 내해수성에 관한 염화물 촉진 시험)

  • Kwon, Jung-Hyun;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.29-34
    • /
    • 2005
  • This paper describes the effect of fly ash replacement on seawater resistance of anti-washout underwater concrete, which was replaced cement by fly ash from $0\%$ to $50\%$. The experimental work was performed to find out the variations of length and weight of specimens, using a chloride acceleration test in $40\^{\circ}$C The results shaw that the admixture using fly ash on an anti-washcout underwater concrete in the sea environment makes it more durable for the attacks of chloride by seawater. Also, the length of specimens of anti-washout underwater concrete, at age 180 days, increased substantially, compared with normal concrete; however, the mixture in which cement was replaced $50\%$ of fly ash shows $93\%$ reduction of the expansion, compared with the normal anti "washout underwater concrete specimen.

Optimum Mix Proportions of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure (수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.43-50
    • /
    • 2007
  • The purpose of this study was to determine the optimum mix proportion of latex modified mortar for agricultural underwater concrete structures repair. The experimental variables included a latex and antiwashout admixture amount, binder-sand ratio, water-binder ratio. This study were evaluated a repair performance and environment effect of latex modified repair mortar for agricultural underwater concrete structures. The pH test was conducted to evaluated the environmental effect and the flow test was peformed to evaluated the workability. Also, compressive, flexural and bond tests were conducted. Test results show that the optimum mix proportion of latex modified repair mortar for agricultural underwater concrete structures, was achieved by 1:1.5 binder-sand ratio, 5% latex ratio (weight of binder), 1.3% antiwashout admixture ratio (weight of binder), 0.33 water-binder ratio and 10% silica lune replacement ratio (weight of cement). The environmental effect and repair performance of optimum mix proportion satisfied all target performance.