• Title/Summary/Keyword: Antiwashout underwater concrete

Search Result 61, Processing Time 0.035 seconds

Statistical Evaluation of Mix proportion Factor of Antiwashout Underwater Concrete (통계적 분석에 의한 수중불분리성콘크리트 배합인자의 특성)

  • 원종필;임경하;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.66-76
    • /
    • 2001
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aims of this research is statistically evaluated to mix proportion factor of antiwashout underwater concrete. Experiment was performed to analyze the influence variables(cement, water, and antiwashout admixture) on fundamental characteristics of antiwashout underwater concrete. The influence variables can be considered for use in a wide range of underwater work where their have statistically significant effect on the characteristics(fluidity, filling ability, resistance to washout, etc.) of antiwashout underwater concrete.

  • PDF

Characteristics of Antiwashout Underwater Concrete with the Mineral Admixtures for Underwater Concrete Structures (수중 콘크리트 구조물을 위한 광물질 혼화제를 첨가한 수중불분리성 콘크리트의 특성)

  • 원종필;임경하;박찬기;김완영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.90-98
    • /
    • 2002
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aim of this research is to evaluate the fundamental characteristics and permeability of antiwashout underwater concrete with fly ash and blast-furnace slag. Test Results of antiwashout underwater concrete with fly ash and blast-furnace slag fluence can provide its excellent fundamental characteristics and resistance of permeability.

A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean (수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구)

  • 김명식;윤재범;박세인
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

A Study on high Quality of Antiwashout Underwater Concrete (수중불분리성콘크리트의 고품질화 연구)

  • 문한영;김성수;전중규;송용규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.111-120
    • /
    • 2000
  • In case of constructing concrete structure under water, generally concrete mixed with antiwashout admixture, high range water reducer, or AE-water reducing agent etc has been manufactured to ensure the quality of antiwashout underwater concrete because of being difficulty in ascertaining construction situation by the naked eye. The properties of high quality antiwashout underwater concrete that were aimed at affluent fluidity, workability and the compressive strength of 450 kgf/$\textrm{cm}^2$ at 28 ages using two types of blended cements are following as;(1) Setting time of antiwashout underwater concretes using blended cements was more greatly delayed than that of control concrete, however, was satisfied with criteria value of "Quality standard specification of antiwashout admixture for concrete".(2) As a test results of slump flow, efflux time and box elevation of head, it was found that workability of high quality antiwashout underwater concrete was improved. (3) Heat evolution amount of OPC was 1.5 times as high as that of two types of bended cements in 72 hours. (4) Suspended solids of antiwashout underwater concrete using blended cements was more than that of control concrete, also compressive strength of high quality antiwashout underwater concrete was very low in early age, but was better than that of control concrete as to increasing ages.

Diffusion of Chloride Ion in Antiwashout Underwater Concrete (수중불분리성 콘크리트의 염화물이온 침투저항성에 대한 고찰)

  • 김성수;김진철;김홍삼;김종필;김동현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.451-454
    • /
    • 2000
  • Recently, the antiwashout underwater concrete has been increasingly used for underwater structure such as high strength massive concrete structures. However, Concrete has poor quality ad durability due to dilution with separating cementitious material. In this study, specimens were made with antiwashout underwater concrete replaced with mineral admixtures to improve their properties and were placed in air, water, and salt water. To estimation the chloride ion permeation in concrete, ASTM C 1202 Test was performed. The experimental results demonstrate that the increase of the admixtures improved the properties of antiwashout underwater concrete.

  • PDF

A Study on the Characteristics of Antiwashout Underwater Concrete Using Finely Ground Granulated Furnace Blast Slag (고로슬래그미분말을 혼입한 수중불분리콘크리트의 특성에 관한 연구)

  • 이상명;최홍윤;이환우;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.95-98
    • /
    • 1999
  • Recently, the use of the underwater concrete constructions with the antiwashout underwater concrete is increasing. In this study, we investigate the properties of pH, suspended solids, slump flow, box test, air contents of fresh antiwashout underwater concrete and the Unit weight, compressive strength of hardened antiwashout underwater concrete which Ground Granulated Blast Furnace Slag contents 0%, 10%, 20%, 30%, 50%, 60% at 7days and 28days age which is produced and cured in the water and sea water. As a result, Ground Granulated Blast Furnace Slag contents 30% was excellent.

  • PDF

An Experimental Study on the Characteristics of Antiwashout Underwater Concrete Using Sea Sand (해사를 사용한 수중불분리콘크리트의 특성에 관한 실험적 연구)

  • 김명식;백동일;어영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.76-82
    • /
    • 1997
  • Recently as the development of a large-scale ocean structure or ocean is in progress, the importance of underwater concrete construction came to the fore. However, a problem with this underwater concrete construction is the segregation of cement and aggregate occurs when concrete is poured into the underwater. However, recently as an adhesiveness of the constituents of fresh concrete is increased even in our country, antiwashout concrete admixture were developed. The antiwashout concrete admixture can reduce the segregation significantly. Although this antiwashout underwater concrete is superior to the traditional underwater concrete in terms of durability, watertightness, stability, etc. But it is still unsatisfied due to the lack of criterion or construction experiences. Furthermore, because of an insufficiency of natural aggregate, the development of replacing aggregate came to be necessary. Accordingly, the purpose of this study is to investigate the feasibility of sea sand as a replacing aggregate and the characteristic change of antiwashout underwater concrete using river sand, sea sand, and blended sand (river sand:sea sand=3:7) through experimental researches.

  • PDF

A Fundamental Study on the Optimal Mix Proportion for Antiwashout Underwater Concrete (수중 비분리 콘크리트의 최적 배합비에 관한 기초적 연구)

  • 진치섭;김희성;한태영
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.224-232
    • /
    • 1995
  • Recently, in other.view of underwater concrete construction, special admixture agent of concrete has been developed for antiwashout of concrete under water with easy carrying out method in some foreign nations. They had successful cases in experiment and construction and it trend to use in many cases with many scales. However, in domestic, there was rare record in carrying out. In this paper, reference for successful results of experiment and construction about antiwashout underwater concrete, as variable add of special admixture agent and other agents. We have carried out property tests of fresh and hardened concrete, certified the properties and made the antiwashout underwater concrete have enough strength to endure with ea.sy construction. And we have decided the optimal mix proportion for antiwashout underwater concrete under standard state.

A Study on the Hydration Heat of Antiwashout Underwater Concrete Using Fly Ash (플라이애쉬를 사용한 수중불분리성 콘크리트의 수화열에 관한 연구)

  • 권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.30-34
    • /
    • 2000
  • The concretes cast in the sea water would be likely to be rich mix and mass concrete. Therefore it is important to check out the hydration heat of concrete and to reduce it to prevent the concrete from processing the temperature crack. Recently the antiwashout agent is used on underwater concrete for preventing from the segregation of concrete in the water. The experimental studies were done for the combined cement replaced by fly ash 30%unit weight of binder to study on the characteristics of hydration heat of antiwashout underwater concrete, and its characteristic was discussed by comparing on cast in sea water with anther one in air. The present paper showed that the hydration heat concrete replaced by 30%of fly ash was more significantly reduced than the normal concrete. The hydration heat of antiwashout underwater concrete was highter than that of normal concrete, but it was reduced lower than the normal concrete by adding fly ash.

  • PDF

An Experimental Study on the Fundamental Characteristics of Antiwashout Underwater Concrete with Variation of Water-cement Ratio (W/C 변화에 따른 수중불분리 콘크리트의 기초특성에 관한 실험적 연구)

  • 김명식;어영선;윤재범;이상명
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.21-29
    • /
    • 1999
  • In this study, an experiment was performed to analyze the influence of water-cement ratio on the fundamental characteristics of antiwashout underwater concrete using blended sand (sea sand:river sand = 1:1). The water-cement ratio (45%, 50%, 55%, 60%), andtiwashout underwater agent contents (0.82%, 1.00%, 1.14% of water contents per unit volume of concrete), and superplasticizer contents (1.5%, 2.0%, 2.5% of cement contents per unit volume of concrete) were chosen as the experimental parameters. The experimental results show that the underwater segregation resistance, unit weight of hardening concrete and compressive strength were increased as the water-cement ratio decreased and as the antiwashout underwater agent contents increased. On the other hand, the flowability(slump flow) was increased to the 55% of the increase of water-cement ratio, however, it was decreased at the ratio of 60%. From this study, the antiwashout underwater concrete can potentially be used as a materials underwater work of ocean if the water-cement ratio and chemical admixture contents for the suitable balance between cost and performance are properly selected.