• 제목/요약/키워드: Antiviral mechanism of action

검색결과 17건 처리시간 0.027초

Antiviral Effect of Retro-2.1 against Herpes Simplex Virus Type 2 In Vitro

  • Dai, Wenwen;Wu, Yu;Bi, Jinpeng;Wang, Jingyu;Wang, Shuai;Kong, Wei;Barbier, Julien;Cintrat, Jean-Christophe;Gao, Feng;Jiang, Zhengran;Gillet, Daniel;Su, Weiheng;Jiang, Chunlai
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.849-859
    • /
    • 2018
  • Herpes simplex virus type 2 (HSV-2) infection has been a public health concern worldwide. It is the leading cause of genital herpes and a contributing factor to cervical cancer and human immunodeficiency virus (HIV) infection. No vaccine is available yet for the treatment of HSV-2 infection, and routinely used synthetic nucleoside analogs have led to the emergence of drug resistance. The small molecule $Retro-2^{cycl}$ has been reported to be active against several pathogens by acting on intracellular vesicle transport, which also participates in the HSV-2 lifecycle. Here, we showed that Retro-2.1, which is an optimized, more potent derivative of $Retro-2^{cycl}$, could inhibit HSV-2 infection, with 50% inhibitory concentrations of $5.58{\mu}M$ and $6.35{\mu}M$ in cytopathic effect inhibition and plaque reduction assays, respectively. The cytotoxicity of Retro-2.1 was relatively low, with a 50% cytotoxicity concentration of $116.5{\mu}M$. We also preliminarily identified that Retro-2.1 exerted the antiviral effect against HSV-2 by a dual mechanism of action on virus entry and late stages of infection. Therefore, our study for the first time demonstrated Retro-2.1 as an effective antiviral agent against HSV-2 in vitro with targets distinct from those of nucleoside analogs.

Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus

  • Song, Fu-Qiang;Liu, Ying;Kong, Xiang-Shi;Chang, Wei;Song, Ge
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1571-1578
    • /
    • 2013
  • Cancer is a leading cause of death worldwide. Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As a white rot fungus, Inonotus obliquus is valued as an edible and medicinal resource. Chemical investigations have shown that I. obliquus produces a diverse range of secondary metabolites, including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Importantly, their anticancer activities have become a hot recently, but with relatively little knowledge of their modes of action. Some compounds extracted from I. obliquus arrest cancer cells in the G0/G1 phase and then induce cell apoptosis or differentiation, whereas some examples directly participate in the cell apoptosis pathway. In other cases, polysaccharides from I. obliquus can indirectly be involved in anticancer processes mainly via stimulating the immune system. Furthermore, the antioxidative ability of I. obliquus extracts can prevent generation of cancer cells. In this review, we highlight recent findings regarding mechanisms underlying the anticancer influence of I. obliquus, to provide a comprehensive landscape view of the actions of this mushroom in preventing cancer.

연교 추출물 Pinoresinol와 Tamiflu의 병용효과로부터 Influenza Virus 감염에 의한 세포사멸 억제효과 (The Combined Anti-apoptotic Effect from Tamiflu and Pinoresinol of Forsythia fructus Extract Against Influenza Virus Infection)

  • 김상태;김장수;최영웅;김영균
    • 생약학회지
    • /
    • 제42권1호
    • /
    • pp.9-14
    • /
    • 2011
  • The fruit body of Forsythiae Fructus (Oleaceae), a common Korean medical herb, is widely used in the treatment of cold and inflammation. In order to elucidate the action mechanism and the active principles from the plant against anti-influenza virus, the influenza virus hemagglutinin (HA) and neuraminidase (NA) gene RT-PCR and Viral Screening & Identification (VSI) assay were conducted, and the activity against viral replication was also investigated. Consequently, one active constituent, namely pinoresinol showed the in vitro antiviral principle using a cytopathic effect (CPE) reduction method, indicating pinoresinol possessed anti-influenza viral activity. Furthermore, combination of pinoresinol and Tamiflu exhibited higher activities than Tamiflu alone against influenza virus (H3N2) infection. The results suggested that combination of pinoresinol with Tamiflu could be a better candidate for an ant-H3N2 viral agent in the treatment of the influenza.

Analgesic Effects of Intrathecal Curcumin in the Rat Formalin Test

  • Han, Yong-Ku;Lee, Seong-Heon;Jeong, Hye-Jin;Kim, Min-Sun;Yoon, Myung-Ha;Kim, Woong-Mo
    • The Korean Journal of Pain
    • /
    • 제25권1호
    • /
    • pp.1-6
    • /
    • 2012
  • Background: Curcumin has been reported to have anti-inflammatory, antioxidant, antiviral, antifungal, antitumor, and antinociceptive activity when administered systemically. We investigated the analgesic efficacy of intrathecal curcumin in a rat model of inflammatory pain. Methods: Male Sprague Dawley rats were prepared for intrathecal catheterization. Pain was evoked by injection of formalin solution (5%, $50{\mu}l$) into the hind paw. Curcumin doses of 62.5, 125, 250, and $500{\mu}g$were delivered through an intrathecal catheter to examine the flinching responses. The $ED_{50}$ values (half-maximal effective dose) with 95% confidence intervals of curcumin for both phases of the formalin test were calculated from the dose-response lines fitted by least-squares linear regression on a log scale. Results: In rats with intrathecal administration of curcumin, the flinching responses were significantly decreased in both phases. The slope of the regression line was significantly different from zero only in phase 2, and the $ED_{50}$ value (95% confidence interval) of curcumin was $511.4{\mu}g$ (23.5-1126.5). There was no apparent abnormal behavior following the administration of curcumin. Conclusions: Intrathecal administration of curcumin decreased inflammatory pain in rats, and further investigation to elucidate the precise mechanism of spinal action of curcumin is warranted.

Inhibition of MMP-2 and MMP-9 activities by solvent-partitioned Sargassum horneri extracts

  • Karadeniz, Fatih;Lee, Seul-Gi;Oh, Jung Hwan;Kim, Jung-Ae;Kong, Chang-Suk
    • Fisheries and Aquatic Sciences
    • /
    • 제21권6호
    • /
    • pp.16.1-16.7
    • /
    • 2018
  • Background: Matrix metalloproteinases (MMPs) are linked with several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Brown seaweeds are being extensively studied for their bioactive molecule content against cancer progression. In this context, Sargassum horneri was reported to possess various bioactivities including antiviral, antimicrobial, and anti-inflammatory partly due to its phenolic compound content. Methods: In this study, potential of S. horneri was evaluated through anti-MMP effect in HT1080 fibrosarcoma cells. S. horneri crude extract was fractionated with organic solvents, namely, water ($H_2O$), n-buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and n-hexane. The non-toxicity of fraction samples (Sargassum horneri solvent-partitioned extracts (SHEs)) was confirmed by cell-viability assay. SHEs were tested for their ability to inhibit MMP enzymatic activity through gelatin digestion evaluation and cell migration assay. Expressions of MMP-2 and MMP-9 and tissue inhibitors of MMP (TIMPs) were evaluated by reverse transcription and Western blotting. Results: All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to gelatin zymography. Except $H_2O$ fraction, fractions hindered the cell migration significantly. All tested fractions suppressed both mRNA and protein levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Conclusion: Overall, current results suggested that S. horneri has potential to be a good source for anti-MMP agents, and further investigations are underway for better understanding of the action mechanism and isolation and elucidation of the bioactive molecules.

핵산유도체들의 항 Human Immunodeficiency Virus in vitro 약효평가와 작용기전연구 (In vitro Evaluation of Anti-Human Immunodeficiency Virus Activity of Nucleoside Derivatives and Studies on Their Mode of Action)

  • 이종교;김동기;김지현;김해수;피미경;박종백;김백
    • 대한바이러스학회지
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 1997
  • To evaluate in vitro anti-HIV efficacies of nucleoside derivatives, MT-4 cell line was infected with HIV-1 and HIV-2 respectively and treated with various compounds and the formerly approved drugs such as AZT, d4T, ddC and ddI. CPE method was used to evaluate their antiviral activity. Most dideoxynucleosides, AZT, d4T, ddC and ddI, showed anti-HIV activities against both viruses but no other compounds including anti-herpesvirus drugs did any. Further experiments were carried out to study their inhibitory mechanism of viral adsorption. The results showed no inhibition of syncytium formation due to an interaction between the gp120 expressed in HIV -infected cell surface and CD4 receptor on the uninfected cell surface in the presence of AZT. AZT showed no activity up to $100\;{\mu}g/ml$. Inhibition of reverse transcriptase (RT) in the presence of AZT-triphosphate was tested by using RT expressed in E. coli and purified and its $IC_{50}$ was 4.5 nM.

  • PDF

금은화(金銀花) 및 금은화전초(金銀花全草)가 Raw 264.7 cell에서 LPS로 유도된 NO의 생성, iNOS, COX-2 및 cytokine에 미치는 영향 (Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase, $TNF-{\alpha}$, $IL-1{\beta}$ and COX-2 Expression by Flower and Whole Plant of Lonicera japonica)

  • 이동언;이재령;김영우;권영규;변성희;신상우;서성일;권택규;변준석;김상찬
    • 동의생리병리학회지
    • /
    • 제19권2호
    • /
    • pp.481-489
    • /
    • 2005
  • Lonicerae Flos has antibacterial effects against Staphylococcus aureus, streptococci, pneumococci, Bacillus dysenterii, Salmonella typhi, and paratyphoid. It is an antiviral agent. The herb has a cytoprotective effect against $CCl_{4}-induced$ hepatic injury. It has antilipemic action, interfering with lipid absorption from the gut. Nowadays this herb is used mainly in the treatment of upper respiratory infections, such as tonsillitis and acute laryngitis. It is also used in the treatment of skin suppurations, such as carbuncles, and to treat viral conjunctivitis, influenza, pneumonia, and mastitis. Lonicerae Flos is dried flower buds of Lonicera japonica, L. hypoglauca, L. confusa, or L. dasystyla. But, for the most part, we use whole plant of Lonicera japonica, as a flower bud of it. And, little is known of the original copy of effects of whole plant, except for the 'Bon-Cho-Gang-Mok', which is written the effects of flower of Lonicera japonica are equal to effects of leaves and branch of it. The present study was conducted to evaluate the effect of flower and whole plant of Lonicera japonica on the regulatory mechanism of cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, flower and whole plant of Lonicera japonica water extracts inhibited nitric oxide production in a dose-dependent manner and abrogated iNOS and COX-2. Flower and whole plant of Lonicera japonica water extract did not affect on cell viability. To investigate the mechanism by which flower and whole plant of Lonicera japonica water extract inhibits iNOS and COX-2 gene expression, we examined the on phosphorylation of inhibitor ${\kappa}B{\alpha}$ and assessed production of $TNF-{\alpha}$, $interleukin-1{\beta}$ $(IL-1{\beta})$ and interleukin-6 (IL-6). Results provided evidence that flower and whole plant of Lonicera japonica inhibited the production of $IL-1{\beta}$, IL-6 and activated the phosphorylation of inhibitor ${\kappa}B{\alpha}$ in Raw 264.7 cells activated with LPS. These findings suggest that flower and whole plant of Lonicera japonica can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections, respectively.