• 제목/요약/키워드: Antiviral

검색결과 803건 처리시간 0.022초

Biological Activities on Phenolic Compounds of Japanese anise (Illicium anisatum L) Extracts

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • 제7권3호
    • /
    • pp.120-125
    • /
    • 2019
  • In this paper, we have isolated six phenolic compounds, such as (+)-catechin (1), taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-xylose (3), quercetin (4), quercetin-3-O-${\alpha}$-L(+)-rhamnose (quercitrin) (5), apigenin-8-C-rhamnosyl-(1'''${\rightarrow}$2'')-glucoside (2''-O-rhamnosylvitexin) (6) from the EtOAc(Ethyl Acetate) and $H_2O$ soluble fractions of Japanese anise(Illicium anisatum L) leaves and twigs. Also, we have evaluated antioxidative and antiviral activity for each isolated compound. The antioxidative test was DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. According to the experimental results, all of the isolated compounds indicated the increased radical scavenging activities as the concentration increases and most of the isolated compounds indicated generally good antioxidative values compare to the controls, ascorbic acid and ${\alpha}$-tocopherol. In the antiviral activities, all of the isolated compounds had no potentials in rhinovirus 1B (HRV 1B). But in enterovirus 71 (EV 71) and Influenza virus A/PR/8 (Influenza PR8), only quercetin (4) indicated the good antiviral activity compare to the control. Based on the above results, we found that the phenolic compounds of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Synthesis and Antiviral Evaluation of 1'-Branched-5'-Norcarbocyclic Adenosine Phosphonic Acid Analogues

  • Oh, Chang-Hyun;Yoo, Kyung-Ho;Hong, Joon-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2473-2478
    • /
    • 2010
  • Novel 1'-methyl-5'-norcarbocyclic adenosine phosphonic acid analogues were synthesized using an acyclic stereoselective route from commercially available 3,3-diethoxy-propan-1-ol 4. The synthesized nucleoside phosphonate 19 and phosphonic acid 21 were subjected to antiviral screening against various viruses.

Synthesis and Antiviral Activity of Novel Anomeric Branched Carbocyclic Nucleosides

  • Kim, Ai-Hong;Hong, Joon-Hee
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1105-1110
    • /
    • 2005
  • Novel anomeric branched carbocyclic nucleosides were synthesized from 1,3-dihydroxy acetone. 4'-Hydroxymethyl was installed by [3,3]-sigmatropic rearrangement reaction and 1'-methyl group was introduced by carbonyl addition of methylmagnesium bromide. The coupling of nucleosidic bases and desilylation afforded a series of novel nucleosides. The synthesized compounds $16{\~}19$ were evaluated for their antiviral activity against HIV-1, HSV-1, HSV-2, and EMCV. Compounds 16 and 19 exhibit toxicity non-related to any anti-HIV-1 activity.

Synthesis and Antiviral Evaluation of Novel Acyclic Nucleosides

  • Hong, Joon-Hee;Ko, Ok-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1284-1288
    • /
    • 2003
  • A very short and concise synthetic route for a novel acyclic version of d4T is described. The required quaternary carbon was successfully installed using a [3,3]-sigmatropic rearrangement. The condensation of the mesylates 16-18 with an adenine base under standard nucleophilic substitution conditions ($K_2CO_3$, 18-Crown- 6, DMF) in addition to deblocking afforded the target acyclic nucleosides 22-24. In addition, the antiviral evaluations against various viruses were performed.

Synthesis and Antiviral Activity of Novel Phenyl Branched Apiosyl Nucleosides

  • Kim, Jin-Woo;Hong, Joon-Hee
    • Archives of Pharmacal Research
    • /
    • 제29권6호
    • /
    • pp.464-468
    • /
    • 2006
  • Novel phenyl branched apiosyl nucleosides were synthesized in this study. The introduction of phenyl group in the 4'-position was accomplished by a [3,3]-sigmatropic rearrangement. Apiosyl sugar moiety was constructed by sequential ozonolysis and reductions. The natural bases (cytosine and adenine) were efficiently coupled with an apiosyl sugar by classical glycosyl condensation procedure (persilyated base and TMSOTf). The antiviral activities of the synthesized compounds were evaluated against the HIV-1, HSV-1, HSV-2 and HCMV.

Synthesis of Novel Dimethylcyclopropyl Nucleosides as Potential Antiviral Agents

  • Kook, Min-Cheol;Park, Jae-Kyung;Cho, Ae-Hee;Choi, Bo-Gil
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.356.1-356.1
    • /
    • 2002
  • The carbocyclic nucleosides have extensively studied as a promising antiviral agents having chemical and metabolical stability. In our research program for discovery of antiviral drugs. some novel dimethylcyclopropyl nucleosides possessing additional methyl spacer between purine bases and the ring was synthesized. The important intermediate, dimethylcyclopropyl alcohol was synthesized from ethyl chrysanthemate via its ozonolysis, isomerization reduction. (omitted)

  • PDF

Synthesis and Biological Evaluation of Pyrimidine Nucleosides Fused with 3′,4′- Tetrahydrofuran Ring

  • Kim, Myong-Jung;Chung, Soon-Yong;Liang, Cheng-Wu;Chun, Moon-Woo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.363.2-363.2
    • /
    • 2002
  • A number of 2',3'-deoxynucleosides have been discovered to possess significant antiviral activity against HIV-1 and other viruses. Since it has been suggested that proper conformation of the dideoxynucleosides in terms of ring puckering of the five-membered sugar moiety is required for them to exhibit antiviral activity a number of nucleoside analogues to fix sugar-ring puckering have been synthesize and evaluated for antiviral activity. (omitted)

  • PDF

Antiviral Triterpenes from Prunella vulgaris

  • Ryu, Shi-Yong;Lee, Chong-Kyo;Lee, Chong-Ock;Kim, Hae-Soo;Zee, Ok-Pyo
    • Archives of Pharmacal Research
    • /
    • 제15권3호
    • /
    • pp.242-245
    • /
    • 1992
  • Two triterpenes 1 and 2 with antiviral activity against Herpes simplex virus type 1 in vitro were isolated from Prunella vulgaris. Each compound caused a significant reduction in viral cytopathic effect when vero cells were exposed to them for 72 hours after viral challenge. They were identified as betulinic acid (1) and $2\alpha, 3\alpha$-dihydroxyurs-12-en-28-oic acid(2) on the basis of their spectroscopic properties. The antiviral activity of them was estimated as $EC_{50}=30\;\mu$g/ml(1) and $8\;\mu$g/ml(2), respectively by plaque reduction assay.

  • PDF

Synthesis and Antiviral Activity of Novel Methylene Cyclopropyl Nucleosides

  • kwak, Eun-Yee;Hong, Joon-Hee;Lee, Chong-Kyo;Choi, Bo-Gil
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.559-563
    • /
    • 2000
  • Novel exomethylene cyclopropyl nucleosides were synthesized as potential antiviral agents. The key intermediate 5 was synthesized in 4 steps, from Feists acid 1 and was condensed with purine derivatives by the $S_N2$ type reaction to give some cyclopropyl nucleosides. The synthesized nucleosides did not showed any significant antiviral activity against HSV-1, HSV-2, HCMV, HIV-1, HIV-2, and HBV up to 100 $\mu\textrm{m}$.

  • PDF

Synthesis and Antiviral Activity of 3-Aminoindole Nucleosides of 2-Acetamido-2-deoxy-D-glucose

  • Abdel-Rahman, Adel A.H.;El-Latif, Mona M. Abd;El-Essawy, Farag A.;Barakat, Yousif A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3417-3422
    • /
    • 2012
  • A new method for the construction of 3-aminoindole nucleosides of 2-acetamido-2-deoxy-D-glucose based is presented. Nitration and acetylation of the indole nucleosides by acetic anhydride-nitric acid mixture followed by reduction using silver catalyst (SNSM) impregnated on silica gel, afforded the corresponding amino indole nucleosides. The nucleosides were tested for antiviral activity against hepatitis B virus (HBV) to show different degrees of antiviral activities or inhibitory actions.