• Title/Summary/Keyword: Antireflective

Search Result 32, Processing Time 0.03 seconds

Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process (양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발)

  • Shin, H.;Park, Y.;Seo, Y.;Kim, B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

Improved Antireflection Property of Si by Au Nanoparticle-Assisted Electrochemical Etching (금 나노입자 촉매를 이용한 단결정 실리콘의 전기화학적 식각을 통한 무반사 특성 개선)

  • Ko, Yeong-Hwan;Joo, Dong-Hyuk;Yu, Jae-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We fabricated the textured silicon (Si) surface on Si substrates by the electrochemical etching using gold (Au) nanoparticle catalysts. The antireflective property of the fabricated Si nanostructures was improved. The Au nanoparticles of ~20-150 nm were formed by the rapid thermal annealing using thermally evaporated Au films on Si. In the chemical etching, the aqueous solution containing $H_2O_2$ and HF was used. In order to investigate the effect of electrochemical etching on the etching depth and reflectance characteristics, the sample was immersed in the aqueous etching solution for 1 min with and without applied cathodic voltages of -1 V and -2 V. As a result, the solar weighted reflectance, i.e., the averaged reflectance with considering solar spectrum (air mass 1.5), could be efficiently reduced for the electrochemically etched Si by applying the cathodic voltage of -2 V, which is expected to be useful for Si solar cell applications.

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Thermally Stable Antireflective Coatings based on Nanoporous Organosilicate

  • Kim, Su-Han;Cho, Jin-Han;Char, Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.282-282
    • /
    • 2006
  • Nanoporous organosilicate thin films were realized by the microphase separation of pore generating components mixed with an organosilicate matrix. The refractive index of such nanoporous organosilicate films can be tuned in the range of $1.40{\sim}1.22$. With a nanoporous single layer with n ${\sim}1.225,\;99.85\;%$ transmittance in the visible range was achieved. In order to overcome the limitation on the narrow wavelength for high transmittance imposed by single nanoporous thin films, bilayer thin films with different reflectance for each layer were prepared by inserting high refractive index layer with a refractive index of 1.447. It is demonstrated that the novel broadband antireflection coating with improved transmittance can be easily achieved by the nanoporous bilayer thin films described in present study.

  • PDF

Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties

  • Cho, Jin-Han;Hong, Jin-Kee;Char, Kook-Heon;Caruso, Frank
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.310-310
    • /
    • 2006
  • We have demonstrated the formation of highly nanoporous films composed of two different BCMs through layer-by-layer (LbL) assembly on substrates. The films thus prepared showed tunable optical properties, with strong antireflective properties with light transmission above 99%. Considering the wide application areas of both LbL multilayers and block copolymer thin films, the approaches introduced in present study are likely to open up new possibilities for devices with multifunctional properties.

  • PDF

Preparation and Characterization of Antireflective Film in $TiO_2-SiO_2$ System by Sol-Gel Method (Sol-Gel법에 의한 $TiO_2-SiO_2$계 저반사 박막의 제조 및 특성)

  • 윤태일;최세영;이용근;이재호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.775-783
    • /
    • 1993
  • TiO2-SiO2 system anti-reflective(AR) film was prepared to decrease reflectance on the glass surface. The experiments were carried out as fellow, 1) preparation & hydrolysis of TiO2-SiO2 system sols. 2) glass dipping, and 3) drying & heat treatment. We investigated the refractive index and thickness of film with viscosity, zeta-potential of sol, sol concentration, withdrawal speed, drying and heat treatment condition. As a result, we prepared good qualitative Quarter-Half-Quarter type anti-reflective film that had minimum, 0.02% and average reflectance, 0.087% in the visible region.

  • PDF

Rigorous coupled-wave analysis of antireflective surface-relief gratings

  • Han, Chang-Wook;Cho, Doo-Jin;Rhee, Bum-Ku
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.26-35
    • /
    • 1997
  • Rigorous coupled-wave analysis (RCWA) with a simplified eigenvalue problem is used to investigate the an-tireflective property of one-dimensional surface-relief gratings such as binary gratings, triangular gratings and gratings with triangle-like surface profiles. The convergence of RCWA is investigated by varying the number of layers and the number of space-harmonics used in the computation. For unpolarized light normally incident on a medium of refractive index 1.64 from vaccum, a triangle-like grating shows the reflectivity of $1.6 {\times} 10^{-4}$ in contrast to a minimum reflectivity of $3.8 {\times} 10^{-3}$ for a binary grating. We also study the dependence of reflectivity on the wavelength, and on the angle of incidence for a groove shape and depth which result in minimum reflectivity.

Synthesis and Dispersion Stabilization of Indium Tin Oxide Nanopowders by Coprecipitation and Sol-Gel Method for Transparent and Conductive Films

  • Cho, Young-Sang;Hong, Jeong-Jin;Kim, Young Kuk;Chung, Kook Chae;Choi, Chul Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.831-841
    • /
    • 2010
  • Indium tin oxide (ITO) nanopowders were synthesized by coprecipitation and the sol-gel method to prepare a stable dispersion of ITO nano-colloid for antistatic coating of a display panel. The colloidal dispersions were prepared by attrition process with a vibratory milling apparatus using a suitable dispersant in organic solvent. The ITO coating solution was spin-coated on a glass panel followed by the deposition of partially hydrolyzed alkyl silicate as an over-coat layer. The double-layered coating films were characterized by measuring the sheet resistance and reflectance spectrum for antistatic and antireflective properties.

Effect of self-assembled monolayer and aluminum oxide ALD film on a PMMA substrate

  • Shin, Sora;Park, Jongwan
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.525-529
    • /
    • 2018
  • The antireflective (AR) coated poly methyl methacrylate (PMMA) substrate was deposited by atomic layer deposition (ALD) on a self-assembled monolayer (SAM) to improve hydrophobicity and mechano-chemical properties of organic thin films. The water contact angles (WCA) were tested to characterize the surface wettability of SAM octadecyltrichlorosilane (OTS) films. Results showed that a contact angle of $105.9^{\circ}$ was obtained for the SAM films with an annealing process, and the highest WCA of $120^{\circ}$ was achieved for the films prepared by the SAM and ALD multi-process. The surface morphology of the SAM films with different assembly times and varying number of ALD cycles was obtained by atomic force microscopy (AFM). The maximum light transmittance for the SAM films on the PMMA substrate reached 99.9% at a wavelength of 450 nm. It was found that the SAM surfaces were not affected at all by the ALD process.