• Title/Summary/Keyword: Antioxidative enzyme

Search Result 447, Processing Time 0.027 seconds

The Effects of the Makgeolri on the Antioxidative Activity in the Endotoxin LPS-treated Rats (내독소인 LPS로 처치된 흰쥐에 대한 막걸리 항산화 활성효과)

  • Kwon, Ryun-Hee;Chae, Go-Yeon;Ho, Boe-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.166-170
    • /
    • 2011
  • Modem people have begun to have the nationwide interest in the rice wine called Makgeolri which is one of the traditional Korean alcoholic liquors. This study was performed to investigate the effects of San sung Makgeolri extract (SM) on antioxidation together with the determination of pH and dissolved oxygen (DO) in the progress of fermentation in the lipopolysaccharide(LPS)-treated rats. We examined the levels of SOD (superoxide dismutase), CAT (catalase), GPx (glutathione peroxidase) in liver homogenates and the histopathological observations in liver tissue. LPS-treated group markedly decreased the levels of SOD, CAT and GPx. But SM + LPS-treated group significantly increased the levels of them. Furthermore, the antioxidative effects of SM were supported by the histopathological observations in liver tissue which showed severe inflammation and necrosis in LPS-treated group, compared to the attenuated inflammation and necrosis in SM + LPS-treated group. This results suggested that SM could be a candidate of antioxidative material in spite of alcoholic liquors.

Effects of Green Tea Catechin on Platelet Phospholipase $A_{2}$ Activity and the Liver Antioxidative Defense System in Streptozotocin-induced Diabetic Rats

  • Yang, Jeong-Ah;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.213-218
    • /
    • 2000
  • The purpose of the study was to investigate the effects of dietary green tea catechin and vitamin E on the phospholipse {TEX}$A_{2}${/TEX} activity and th antioxidative defense system in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley male rats weighing 100$\pm$10 gm were randomly assigned to one normal and five STZ-induced diabetic groups. The diabetic groups were assigned either a catechin-free diet (DM group), 0.5% catechin diet (DM-0.5C group), 1% catechin diet (DM-1C group), vitamin E-free diet (DM-0E group), and 400 mg vitamin E per kg diet (DM-400E group) according to the levels of dietary catechin or vitamin E supplementation. The vitamin E levels of the normal, DM, DM-0.5C, and DM-1C groups were 40 mg per kg diet. Diabetes was experimentally induced by an intravenous injection of streptozotocin after 4 weeks of feeding the five experimental diets. The animals were sacrificed on the 6th day of he diabetic state. The body weight gains were lower in all five diabetic groups after the STZ injection. The platelet phospholipase {TEX}$A_{2}${/TEX}({TEX}$PLA_{2}${/TEX}) activity in the diabetic groups was higher than that in the normal group. However, the enzyme activity in the DM-0.5C, DM-1C, and DM-400E groups was lower than that in the DM and DM-0E groups. The cytochrome {TEX}$P_{450}${/TEX} and cytochrome {TEX}$b_{5}${/TEX} content and NADPH-cytochrome {TEX}$P_{450}${/TEX} reductase activity were about 50~110% higher in the DM and DM-0E groups than in the normal group, yet significantly reduced by either catechin or vitamin E supplementation. The superoxide dismutase (SOD) content in the liver did not differ significantly in any of the groups. However, the glutathione peroxidase (GSHpx) activity was generally lower in the diabetic groups, compared with the normal group, whereas that of the DM-0.5C, DM-1C, and DM-400E groups was significantly higher compared with that of the DM and DM-0E groups. The levels of thiobarbituric acid reactive substances (TBARS) in the liver tissue were 148% and 201% higher in the DM and DM-0E groups, respectively, compared with the normal group, however, these levels were reduced by either catechin or vitamin E supplementation (DM-0.5, DM-1C and DM-400E). Accordingly, the present results indicate that STZ-induced diabetic rats exhibited an imbalance between free radical generation and scavenger systems in the liver which led to the acceleration of lipid peroxidation. However, these abnormalities were reduced and the antioxidative defense system was restored by either dietary catechin or vitamin E supplementation. In conclusion, the effects of dietary catechin or vitamin E in streptozotocin-induced diabetic rats would appear to inhibit lipid peroxidation as an anti-oxidant by regulating the activity of {TEX}$PLA_{2}${/TEX}.

  • PDF

Effect of Water and Ethanol Extracts of Persimmon Leaf and Green Tea Different Conditions on Lipid Metabolism and Antioxidative Capacity in 12-month-old Rats (추출 조건을 달리한 감잎과 녹차의 물 및 에탄올 추출물이 노령쥐의 지방대사와 항산화능에 미치는 영향)

  • 김성경;이혜진;김미경
    • Journal of Nutrition and Health
    • /
    • v.34 no.5
    • /
    • pp.499-512
    • /
    • 2001
  • This study was performed to investigate effects of dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea on lipid metabolism, lipid peroxidation and antioxidative enzyme activity in 12-month-old rats. Fifty-four male Sprague-Dawley rats weighing 542$\pm$4.5g were blocked into groups according to their body weight and were raised for four weeks with the diets containing 5%(w/w) dried leaf powders of persimmon(Diospyros kaki Thunb) and green tea(Camellia Sinensis O. Ktze), water or 75% and 95% ethanol extracts from same amount of each dried tea powder. Food intake was not significantly different among all groups, but weight gain of green tea powder group was significantly lower than that of control group. Plasma and liver lipid levels of all the tea diet groups were lower than those of control group. Especially, 75% ethanol extract of persimmon leaf decreased total lipid and triglyceride concentrations in plasma and 95% ethanol extract of persimmon leaf decreased liver total lipid level. However, there was no difference between 75% ethanol extracts groups and 95% ethanol extracts groups in lipid metabolism. Superoxide dismutase(SOD) and catalase activities in erythrocyte were remarkably increased by all the green tea diets. SOD, catalase and glutathione peroxidase activities in liver were increased by the feeding of ethanol extracts from green tea and persimmon leaf powder. Liver xanthine oxidase activity was not different among all groups. Plasma Thiobarbirutic acid reactive substance(TBARS) concentrations of all the green tea diet groups were significantly low. It was thought that high flavonoids in green tea inhibited plasma lipid peroxidation by promoting SOD, catalase activities in erythrocyte. 95% ethanol extract of persimmon leaf also inhibited plasma lipid peroxidation by high vitamin E and beta-carotene. Persimmon leaf powder decreased liver TBARS concentration by vitamin E, betacarotene and vitamin C and by increasing activities of antioxidative enzymes with flavonoids. In conclusion, dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea were effective in lowering lipid levels and inhibiting lipid peroxidation in 12-month-old rats. Above all, ethanol extracts of persimmon leaf decreased plasma and liver lipid levels and persimmon leaf powder effectively inhibited liver lipid peroxidation. Extracts of green tea leaf inhibited plasma lipid peroxidation. In lowering lipid levels and inhibiting lipid peroxidation, ethanol extracts were more effective than water extracts, but there was no difference between 75% ethanol extracts and 95% ethanol extracts in lipid metabolism. (Korean J Nutrition 34(5) : 499~512, 2001)

  • PDF

Effects of Green Tea Catechin on Mixed Function Oxidase System and Antioxidative Defense System in Rat Lung Exposed to Microwave

  • Kim, Mi-Ji;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • The purpose of this study was to investigate the effects of green tea catechin on mixed function oxidase system (MFO), lipofuscin contents, carbonyl value, oxidative damage and the antioxidative defense system in lung of microwave exposed rats. Experimental groups were divided to normal group and microwave exposed group. The microwave exposed groups were subdivided into three groups: catechin free diet (MW-0C) group, 0.25% catechin (MW-0.25C) group and 0.5 % catechin (MW-0.5C) group according to the levels of dietary catechin supplementation. The rats were irradiated with microwave at frequency of 2.45 GHz for 15 min. Experimental animals were sacrificed at 6th day after microwave irradiation. The contents of cytochrome P$_{450}$ contents in MW-0C group was increased to 95% , compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 16% and 31%, respectively, compared with MW-0C group. The activity of NADPH-cytochrome P$_{450}$ reductase in MW-0C group was increased to 44%, compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 12% and 17%, respectively, compared with MW-0C group. The activity of superoxide dismutase (SOD) in MW-0C group was decreased to 21 %, compared with normal group. MW-0.25C and MW-0.5C group were significantly (p < 0.05) increased, compared with MW-0C group. The activity of glutathione peroxidase (GSHpx) in MW-0C group was significantly decreased, compared with normal group. MW-0.25C and MW-0.5C groups were recovered to the level of normal group. The thiobarbituric acid reactive substances (TBARS) content in MW-0C group was increased to 34 %, compared with normal group. Catechin supplementation groups were maintained the level of normal group. The levels of caybonyl value in MW-0C group was increased to 21 %, compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 14% and 12%, respectively, compared with MW-0C group. The lipofuscin contents in MW-0C group were increased to 23.4 %, compared with normal group. That of MW-0.5C group was significantly reduced, compared with MW-0C group. In conclusion, MFO system was activated and the formation of oxidized protein, lipofuscin was increased and antioxidative defense system was weakened of lung tissue in microwave exposed rats, thus oxidative damage was increased. But it was rapidly recovered to normal level by green tea catechin supplementation.n.

Green Tea Maintains Antioxidative Defense Enzyme Activities and Protects Against Lipid Peroxidation in Rat Gastrocnemius Muscles After Aerobic Exercise

  • Chai, Young-Mi;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.377-382
    • /
    • 2003
  • This study investigated the effects of green tea on the muscle antioxidative defense system in the white & red gastrocnemius muscles of rats after aerobic exercise. Male Sprague-Dawley rats weighing 150 10 g were randomly assigned to a control group, non-exercise with green tea group (G group), and exercise training group. The exercise training group was then further classified as the training (T) group and training with green tea (TG) group, the latter of which was supplemented with green tea in the drinking water during the experimental period. The rats in the exercise training groups (T and TG) were subjected to aerobic exercise on a treadmill 30 min/day at a speed of 28 m/min (7% incline) 5 days/week, while the other groups (control and G group) were cage confined for 4 weeks. Thereafter, the rats were sacrificed with an injected overdose of pentobarbital just after running. In the white muscle, the xanthine oxidase (XOD) activities were 71 % higher in the T group compared to control group, whereas the TG group had the same activity as the control group. The XOD activities in the red gastrocnemius muscle exhibited the same tendency as in the white muscle. The superoxide dismutase (SOD) activity in the white muscle was lower in the T group compared with the control group, yet significantly higher in the TG group compared with the T group. The SOD activities in the red gastrocnemius muscle exhibited the same tendency as in the white gastrocnemius muscle. The glutathione peroxidase (GSHpx) activities in the white & red gastrocnemius muscles were 43 % lower in the T group compared with the control group, yet the activities in the TG group remained at control levels. The glutathione S-transferase (GST) activity in the white muscle was not significantly different among any of the three groups, but in the red gastrocnemius muscle, the TG group had the same activity as in the control group. The thiobarbituric acid reactive substance (TBARS) contents in the white & red gastrocnemius muscles were higher in the T group than in the control but the control and TG groups had the same concentrations of TBARS. In conclusion, the supplementation of green tea in rats subjected to aerobic exercise was found to reduce the peroxidation of muscle lipids by enhancing the antioxidative defense mechanism.

Antioxidative Activity of Mushroom Water Extracts Fermented by Lactic Acid Bacteria (유산균 발효에 의한 버섯 추출물의 항산화 활성)

  • Yang, Hee Sun;Choi, Yu Jin;Oh, Hyun Hee;Moon, Joon Seong;Jung, Hoo Kil;Kim, Kyung Je;Choi, Bong Suk;Lee, Jung Won;Huh, Chang Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.80-85
    • /
    • 2014
  • This study was focused on the development of fermented mushroom water extracts with antioxidative activities. Mushroom water extracts were fermented with Bifidobacterium bifidum, Lactobacillus plantarum, Lactobacillus acidophilus, Leuconostoc lactis, Streptococcus thermophilus and Lactobacillus sakei subsp. LI033 was isolated from kimchi. Fermented mushroom water extracts increased DPPH and ABTS radical scavenging activities in a dose-dependent manner. However, radical scavenging activity of fermented Phellinus linteus and Ganoderma lucidum water extracts was decreased compared to non-fermented mushroom water extracts. Antioxidative activity of fermented mushroom water extracts was also confirmed by xanthin oxidase (XO) inhibition and superoxide dismutase (SOD) activities at the same concentration. As the fermentation progressed, fermented mushroom water extracts increased XO inhibition activity and SOD activity. In conclusion, fermented mushroom water extracts were tentatively identified to enhance enzyme activity.

Antioxidative and Antimicrobial Activities of Persimmon Leaf Tea and Green Tea (감잎차와 녹차의 항산화 및 항균 활성 비교)

  • Lim, Jeong-Ho;Kim, Bum-Keun;Park, Chan-Eun;Park, Kee-Jai;Kim, Jong-Chan;Jeong, Jin-Woong;Jeong, Seung-Won
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.5
    • /
    • pp.797-804
    • /
    • 2008
  • In this study, the antioxidative and antimicrobial activities of persimmon leaf tea and green tea were assessed. The total polyphenol contents of green tea (0.5875 mg/mL) were slightly higher than those of persimmon leaf tea (0.3938 mg/mL). The electron-donating abilities (EDA) of persimmon leaf tea and green tea toward $\alpha$, $\alpha$-diphenyl-$\beta$-picyryl hydrazyl (DPPH) radical were $65.7{\pm}3.7%$ and $68.4{\pm}0.3%$, respectively, as compared to $68.6{\pm}1.1%$ for L-ascorbic acid (1%). The SOD-like activity of persimmon leaf tea ($29.7{\pm}0.9%$) was higher than that of green tea ($28.1{\pm}1.0%$). The nitrite scavenging ability was pH-dependent, highest at pH 1.2, and lowest at pH 6.0, in and persimmon leaf tea was found to exhibit more effective nitrite scavenging ability than green tea. The inhibitory effects of persimmon leaf tea and green tea against angiotensin I converting enzyme were $56.7{\pm}1.9%$ and $67.1{\pm}1.7%$, respectively. Persimmon leaf tea evidenced profound antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Escherichia coil, and Salmonella typhimurium. These results clearly established the antioxidative and antimicrobial potency of persimmon leaf tea.

  • PDF

Effect of Chitosan Oligosaccharides on Cholesterol Level and Antioxidant Enzyme Activities in Hypercholesterolemic Rat (고콜레스테롤 식이에 있어 키토산 올리고당이 체내 콜레스테롤농도 및 항산화효소 활성에 미치는 영향)

  • Kim, Kil-Nam;Joo, Eun-Sook;Kim, Kyu-Il;Kim, Se-Kwon;Yang, Hyun-Pyl;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.36-41
    • /
    • 2005
  • Effect of chitosan oligo saccharides (COS) on the level of serum lipids, antioxidant enzyme activities and lipid peroxidation was investigated in rats fed with high cholesterol diet for 4 weeks, The rats were divided into three experimental groups that is, high cholesterol diet group (0.5% cholesterol; control). high cholesterol diet and 1.0% or 2.0% COS-supplemented groups (COS I , COS II). Serum total cholesterol, LDL-cholesterol and triglyceride level were significantly decreased and relative HDL-cholesterol level in total cholesterol significantly increased in COS II group. Liver TBARS level and activities of SOD and catalase of COS I were also significantly reduced. These results suggest that supplement of chitosan oligosaccharides reduce levels of serum cholesterol and reduce oxidative damage by activating hepatic antioxidative defense system in rats fed with high cholesterol diets.

Activities of Antioxidant Enzymes in Serum of Rats Feeding Soybean Extract (콩 추출물 투여가 흰쥐 혈청의 항산화효소 활성에 미치는 영향)

  • Yun Hong-Tae;Moon Jung-Kyung;Park Keum-Yong;Kim Yang-Ho;Shin Mi-Kyung;Kim Yeung-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.136-140
    • /
    • 2005
  • This study was conducted to determine antioxidative enzyme activity in serum of rats as affected by soybean cultivar, extract feeding concentration and fat dietary. In all cultivars, activities of antioxidant enzymes in treatment of various fat compositions and cholesterol followed by feeding soy-extracts were higher than in nonfeeding control, however, no significant differences existed in statistically. The activities of SOD and GSHpx in serum of rats when fed with various fat dietary were higher in Geomjeongkong 1 than in Tawonkong and Hwangkeumkong. Enzyme activities of SOD and GSHpx with each fat compositions in treatment soy-extracts was no significant differences statistically. There was significant differences among cultivars and concentrations of soy-extracts in interaction effect. Also, the activities of GSHpx was significant differences among cultivars and concentrations of soy-extracts and fat composition in interaction effect.

The Effects of Smoking on Antioxidative Enzyme Activities in Male Adolescents (흡연이 남자 청소년들의 일부 항산화 관련 효소체계에 미치는 영향)

  • 임재연;김정희
    • Korean Journal of Community Nutrition
    • /
    • v.7 no.6
    • /
    • pp.844-851
    • /
    • 2002
  • Smoking can increase oxidative stress and thereby change the antioxidant defense system in the body. To investigate the relationship between male adolescent smoking and antioxidant status, we surveyed the eating habits and dietary intake of 82 smokers and 44 nonsmokers recruited from a male technical high school. In addition, antioxidant enzyme activity and lipid peroxide values were determined in both the plasma and the erythrocytes. Although the frequency of food intake was not significantly different, most nutrient intake was unexpectedly higher in smokers than in nonsmokers. In comparison with the Korean RDA, especially the average intake of Ca, Fe and vitamin $B_2$ didn t reach 75% of the Korean RDA in either smokers or nonsmokers. An analysis of antioxidant enzyme activity showed that plasma catalase. superoxide dismutase (SOD), glutathione peroxidase (GSH-px), erythrocyte catalase and GSH-px activities showed no significant difference between smokers and nonsmokers. However, the erythrocyte SOD activity of smokers (1.57 unit/mgHb) was significantly lower than that of nonsmokers (2.00 unit/mg Hb). In addition, the plasma ceruloplasmin concentration of smokers (28.68 mg/$d\ell$) was significantly higher than that of nonsmokers (26.30 mg/$d\ell$), whereas the specific ceruloplasmin ferroxidase activity of smokers (0.31 unit/mg) was lower than that of nonsmokers (0.35 unit/mg). The plasma and erythrocyte thlobarbituric acid reactive substance (TBARS) of smokers (2.57 $\mu$mol/L, 0.32 $\mu$mol/gHb) were also significantly higher than those of nonsmokers (2.25 $\mu$mol/L, 0.27 $\mu$mol/gHb). The overall data indicate that adolescent smoking might decrease the antioxidant capacity of the body, in part, by lowering the erythrocyte SOD activity and the specific ceruloplasmin ferroxidase activity.