• Title/Summary/Keyword: Antioxidant-activity

Search Result 7,694, Processing Time 0.035 seconds

In Vitro Anti-aging and Hair Follicle Dermal Papilla Cells Activation Effects of Usnea diffracta Vain Extract (송라 추출물의 세포 수준에서 항노화 및 모유두세포 활성화 효과)

  • Min Jeong Kim;Won Yeoung Choi;Hyun Woo Shim;Eun Jin Shin;Jung No Lee;Sung Min Park;Hwa Sun Ryu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.37-48
    • /
    • 2024
  • Songla (Usnea diffracta Vain.) is one of the lichens belonging to the genus Usnea, and pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory, anti-tumor and cardiovascular protection have been reported in previous studies, but its efficacy in skin and hair is not well known. In this study, the effect of Usnea diffracta extract (UDE) on anti-aging and dermal papilla cell proliferation was verified in vitro. As a result of the experiment, it was confirmed that the UDE significantly reduced the expression of MMP-1 and the activity of MAPKs (ERK, p38, JNK) and AP-1 (c-Fos, c-Jun), which were increased by UVA in HDFn. In addition, the UDE significantly increased the proliferation of HFDPC and significantly increased the mRNA expression of VEGF and KGF, which are hair growth factors. Accordingly, the phosphorylation of ERK/CREB involved in hair proliferation and expression of growth factors was increased in a concentration-dependent manner. The main component represented by the main peak was separated and purified using Prep LC by concentrating the UDE, which was confirmed as diffractaic acid through NMR and Mess analysis. Isolated diffractaic acid significantly reduced the expression of MMP-1 increased by UVA in HDFn and increased the proliferation of HFDPC in a concentration-dependent manner. The result suggest that UDE proved its usability as a natural cosmetic material with anti-aging and dermal papilla cell activation effects.

Comparison of Bioconversion Ability and Biological Activities of Single and Multi-Strain Probiotics for an Active Molecule in Roasted Tartary Buckwheat (단일 및 복합 프로바이오틱스 균주에 의한 쓴메밀 내 Rutin의 Quercetin으로의 생물전환 및 이의 생리활성 비교)

  • Song-in Kim;Eunbee Cho;Kyohee Cho;Chang Kwon;Seok-hee Lim;Jong Won Kim;Myung Jun Chung;Su Jeong Kim;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.465-473
    • /
    • 2023
  • In this study, we aimed to evaluate the bioconversion ability of single (Lactiplantibacillus plantarum CBT LP3, Lactococcus lactis subsp. lactis CBT SL6, Streptococcus thermophilus CBT ST3) and multi-strain probiotics to convert rutin to quercetin in roasted tartary buckwheat, and to assess their biological activities. To evaluate the bioconversion efficiency, each strain was cultured for 24 h in MRS media with 5% roasted tartary buckwheat 'Hwangguem-Miso' powder. After then, rutin and quercetin contents were determined by HPLC. Additionally, the biological activities were compared before and after bioconversion of an ingredient. Anti-oxidant effects were measured by DPPH and ABTS assays. Anti-inflammatory effects were determined by measuring NO production, and levels of iNOS, TNF-α, IL-6 and IL-4 using an LPS-induced Raw 264.7 cell model. The bioconversion rate under the combination of three species of probiotics significantly increased more than single species. Antioxidant efficacy results showed the highest activity when the combination of three species of probiotics cultured. The pro-inflammatory factors such as nitric oxide, iNOS, TNF-a, and IL-6 were significantly decreased when the three types of probiotics were combined than single strain was cultured. In addition, level in the anti-inflammatory factor IL-4 was increased. The multi-strain probiotics showed increased bioconversion efficiency, effects of anti-oxidant and anti-inflammatory compared to the single strain. These findings suggest that the fermentation of tartary buckwheat by probiotics may be a valuable candidate for developing functional foods with anti-oxidation and anti-inflammation.

Protective Effect of Plantago asiatica L. Leaf Ethanolic Extract Against Ferric Nitrilotriacetate-Induced Prostate Oxidative Damage in Rats (랫드에서의 Fe-NTA 유발 산화스트레스에 대한 차전초 에탄올 추출물의 전립선보호 효과)

  • Hong, Seung-Taek;Hong, Chung-Oui;Nam, Mi-Hyun;Ma, Yuan-Yuan;Hong, Yun-Jin;Son, Da-Hee;Chun, Su-Hyun;Lee, Kwang-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • Plantago asiatica L. (P. asiatica) has been used as one of the popular folk medicines in Asia for human health care practices. Various activities of P. asiatica have been reported, such as anti-oxidant, anti-glycation, anti-inflammatory and hepatoprotective activity. Therefore, the potential of P. asiatica to reduce oxidative stress has been studied in several ways for over 20 years, especially at liver and kidney. However no investigation has been reported revealing its protective effect on prostate. Method: Treatment of P. asiatica leaf ethanolic extract (PLE) (1 g/kg body weight (b.w.), 2 g/kg b.w., or 4 g/kg b.w.) were given separately to animals for pretreatment once per day for 7 days, and on the seventh day ferric nitrilotriacetate (Fe-NTA; 0.24 mmol Fe/kg b.w.), which is known as an oxidative stress-inducer at prostate, was administrated by i.p to negative control group. At the end of the study period, dissection was carried out for detecting the prostate protective effect of PLE. Result: Fe-NTA-treated animals produced reactive oxygen species (ROS) resulting in depletion of antioxidant biomaker, such as glutathione (GSH), glutathione reductase (GR), and glutathione s-transferase (GST) and increase of lipid peroxidation in prostate. However, PLE pretreatment resulted in an increase in the GSH, GST and GR levels concentration dependent manner and in an significant decrease in the levels of lipid peroxidation. Conclusion: Our data suggest that PLE may be effective in protecting oxidative stress-induced damage of prostate, and PLE may be an chemopreventive agent against Fe-NTA-mediated prostate oxidative damage.

The Hepatoprotective Effect of Active Compounds of Kochiae fructus on D-Galactosamine-Intoxicated Rats (지부자 활성성분이 D-Galactosamine 투여에 의한 흰쥐의 간손상에 미치는 영향)

  • Kim, Na-Young;Lee, Jeong-Sook;Park, Myoung-Ju;Lee, Kyung-Hee;Kim, Seok-Hwan;Choi, Jong-Won;Park, Hee-Juhn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1286-1293
    • /
    • 2004
  • This study was conducted to investigate the biological activity and hepatoprotective effect of various fractions and isolated compounds from Kochiae fructus (KF) extract on D-galactosamine (GaIN)-intoxicated rats. Male Sprague-Dawley rats were divided into control, GaIN treated group (GaIN), GaIN plus KF methanol extract treated group (KFM 200-GaIN), GaIN plus KF butanol extract treated group (KFB 200-GaIN), GaIN plus momordin Ic treated group (Momordin Ic 30-GaIN) and GaIN plus oleanolic acid treated group (Oleanolic acid 30-GaIN). KFM (200 mg/kg BW), KFB (200 mg/kg BW), momordin Ic (30 mg/kg BW) and oleanolic acid (30 mg/kg BW) were orally administered once a day for 14 days. GaIN (400 mg/kg BW) was injected at 30 minutes after the final administration of the compounds. The activities of serum aspartate aminotransferase and alanine aminotransferase were increased in the GaIN group compared to the control group and significantly lower in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Hepatic lipid peroxide level was increased in the GaIN group compared to the control group and was lower in the KFM 200-GaIN, KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Activities of xanthine oxidase and aldehyde oxidase in liver were higher in the GaIN group than in the control group and were significantly decreased in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group compared to the GaIN group. Hepatic glutathione, ${\gamma}$-glutamylcysteine synthetase and catalase activities were decreased in the GaIN group compared to the control group and were higher in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Activities of hepatic glutathione reductase, glutathione S-transferase, superoxide dismutase and glutathione peroxidase were lower in the GaIN group than in the control group and were improved in the KFM 200-GaIN, KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group compared to the GaIN group. Therefore, the current results indicate that momordin Ic administration alleviated the GaIN-induced adverse effect through enhancing the antioxidant enzyme activities.