• 제목/요약/키워드: Antioxidant system

Search Result 1,185, Processing Time 0.031 seconds

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.

Large scale enzymatic production of chitooligosaccharides and their biological activities (키토산올리고당의 효소적 대량생산 및 생리활성)

  • Kim, Se-Kwon;Shin, Kyung-Hoon
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.2-32
    • /
    • 2020
  • In recent years, significant importance has been given to chitooligosaccharides (COS) due to its potent notable biological applications. COS can be derived from chitosan which is commonly produced by partially hydrolyzed products from crustacean shells. In order to produce COS, there are several approaches including chemical and enzymatic methods which are the two most common choices. In this regard, several new methods were intended to be promoted which use the enzymatic hydrolysis with a lower cost and desired properties. Hence, the dual reactor system has gained more attention than other newly developed technologies. Enzymatic hydrolysis derived COS possesses important biological activities such as anticancer, antioxidant, anti-hypersentive, anti-dementia (Altzheimer's disease), anti-diabeties, anti-allergy, anti-inflammatory, etc. Results strongly suggest that properties of COS can be potential materials for nutraceutical, pharmaceutical, and cosmeceutical product development.

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Enhancement of Bioactive Compounds in Mugwort Grown under Hydroponic System by Sucrose Supply in a Nutrient Solution (양액 내 자당 처리에 의한 수경재배 쑥의 생리활성물질 증진)

  • Moon-Sun Yeom;Jun-Soo Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • Sucrose (suc) is a disaccharide that consists of glucose (glu) and fructose (fru). It is a carbohydrate source that acts as a nutrient molecule and a molecular signal that regulates gene expression and alters metabolites. This study aimed to evaluate whether suc-specific signaling induces an increase in bioactive compounds by exogenous suc absorption via roots or whether other factors, such as osmotic stress or biotic stress, are involved. To compare the osmotic stress induced by suc treatment, 4-week-old cultured mugwort plants were subjected to Hoagland nutrient solution with 10 mM, 30 mM, and 50 mM of suc or mannitol (man) for 3 days. Shoot fresh weight in suc and man treatments was not significantly different from the control. Both man and suc treatments increased the content of bioactive compounds in mugwort, but they displayed different enhancement patterns compared to the suc treatments. Mugwort extract treated with suc 50 mM effectively protected HepG2 liver cells damaged by ethanol and t-BHP. To compare the biotic stress induced by suc treatment, 3-week-old mugwort plants were subjected to microorganism and/or suc 30 mM with Hoagland nutrient solution. Microorganisms and/or suc 30 mM treatments showed no difference about the shoot fresh weight. However, sugar content in mugwort treated with suc 30 mM and microorganism with suc 30 mM treatment was significantly higher than that of the control. Suc 30 mM and microorganism with suc 30 mM were effective in enhancing bioactive compounds than microorganism treatment. These results suggest that mugwort plants can absorb exogenous suc via roots and the enhancement of bioactive compounds by suc treatment may result not from osmotic stress or biotic stress because of microorganism, but by suc-specific signaling.

Antibacterial and Antioxidative Activities of Quercus acutissima Carruth Leaf Extracts and Isolation of Active Ingredients (상수리나무 잎 추출물의 항균 및 항산화 활성과 활성 물질 분리)

  • Park, Soo-Nam;Kim, So-I;Ahn, You-Jin;Kim, Eun-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this study, the antibacterial activity, antioxidative effects, inhibitory effects on tyrosinase, inhibitory effects on elastase, and components of Quercus acutissima Carruth leaf extracts were investigated. MIC values of ethyl acetate fraction from Q. acutissima Carruth leaf on P. acnes, S. aureus, P. ovale, and E. coli were 0.13 %, 0.25 %, 0.13 % and 0.25 %, respectively. The results showed that the antibacterial activity of the ethyl acetate fraction was the highest in the S. aureus, P. acnes, and P. ovale. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$) of extract/fractions of Q. acutissima Carruth. leaf was in the order: 50 % ethanol extract (12.13 ${\mu}g/mL$) < ethyl acetate fraction (7.07 ${\mu}g/mL$) < deglycosylated flavonoid aglycone fraction (6.20 ${\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of some Q. acutissima Carruth leaf extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The order of ROS scavenging activity was 50 % ethanol extract ($OSC_{50}$, 1.81 ${\mu}g/mL$) < ethyl acetate fraction (1.70 ${\mu}g/mL$) < deglycosylated flavonoid aglycone fraction (0.70 ${\mu}g/mL$). Deglycosylated flavonoid aglycone fraction showed the most prominent scavenging activity. The protective effects of extract/fractions of Q. acutissima Carruth leaf on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The Q. acutissima Carruth leaf extracts suppressed photohemolysis in a concentration dependent manner, particularly deglycosylated flavonoid aglycone fraction exhibited the most prominent celluar protective effect (${\tau}50$, 220.00 min at 25 ${\mu}g/mL$). Aglycone fractions obtained from the deglycosylation reaction of ethyl acetate fraction among the Q. acutissima Carruth leaf extracts, showed 3 bands (QA 1, QA2 and QA3) on TLC. TLC chromatogram of ethyl acetate fraction of Q. Carruth. leaf extract revealed 4 bands (QA 1 ${\sim}$ QA 4), Among them, kaempferol (QA 1), quercetin (QA 2), and gallic acid (QA 3) were identified. The inhibitory effect ($IC_{50}$) of aglycone fraction on tyrosinase was 65.7 ${\mu}g/mL$. The inhibitory effect ($IC_{50}$) of aglycone fraction on elastase was 24.50 ${\mu}g/mL$. These results indicate that extract/fractions of Q. acutissima Carruth. can functionized as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. Extract/fractions of Q. acutissima Corruth can be applicable to new functional cosmetics for antioxidant, antiaging, antibacterial activity.