• Title/Summary/Keyword: Antioxidant ability

Search Result 1,075, Processing Time 0.023 seconds

Screening for Fittest Miscellaneous Cereals for Reclaimed Land and Functionality Improvement of Sorghum bicolor Cultivated in Reclaimed Land (간척지 적응성 잡곡 선발 및 간척지 재배 수수의 기능성 향상 효과)

  • Kang, Chan Ho;Lee, In Sok;Kwon, Suk Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.109-126
    • /
    • 2019
  • Genetic resources of 84 species of Setaria italica BEAUVOIS, Sorghum bicolor, and Panicum miliaceum were collected to select the adaptable miscellaneous cereals in Saemangeum reclaimed land. The adaptability of Sorghum bicolor in reclaimed land was the highest among the three cereals cultivated on reclaimed land. The ratio of the average height of Sorghum bicolor plants cultivated in reclaimed land/normal field was 0.82, that of Panicum miliaceum was 0.61, and that of Setaria italica BEAUVOIS was 0.51. Three species of Sorghum bicolor, Satangdajuk, Kkamansusu, and Nampungcharl, were selected as potential genetic resources as they had excellent adaptability to reclaimed land. The yield of Satandaejuk on reclaimed land was 229.4 kg/10a, and the yield ratio of reclaimed land/normal field was 89.3%. The yield of Kkamansusu was 227.4 kg/10a, with reclaimed land/normal field ratio of 87.8%, and yield of Nampungcharl was 239.6 kg/10a, and reclaimed land/normal field ratio of 86%. In order to study the salt tolerance of selected genetic resources, we conducted salinity test. Salinity tolerance of Sorghum bicolor species-Satangdajuk, Kkamansusu, Nampungcharl was excellent compared to that of the other cereals. Among these, Satandaejuk had to highest salt tolerance level. Polyphenols, flavonoids, and detoxification of free radical were also studied. The anti-diabetic property of the cereals was also analyzed by ${\alpha}$-glucosidase inhibitory activity. We confirmed that the functionality of 3 lines in reclaimed land had improved in all the functional analysis categories when compared to that with yield in the normal field. Polyphenol, an antioxidant, increased in the range of 2~26% when cultivated in reclaimed land and the flavonoid content also increased from 8.5 to 55.6%. DPPH elimination capability, the ability to scavenge harmful reactive oxygen, also increased from 16.7 to 47% when cultivated in reclaimed land. The anti-diabetic activity and ${\alpha}$-glucosidase inhibition activity of selected Sorghum bicolor species-Satangdajuk, Kkamansusu, Nampungcharl also increased from 18.4 to 19.9% when cultivated on reclaimed land.

Physicochemical properties of dried Saururus chinensis and the antioxidative activities of water and 70% ethanol extracts (덖음온도를 달리하여 전저리한 삼백초 건조물의 이화학적 특성 및 물과 70% 에탄올 추출물의 항산화효과)

  • Kang, Myung-Hwa;An, Su-Mi;Kim, Do-Hee
    • Journal of Nutrition and Health
    • /
    • v.52 no.4
    • /
    • pp.399-407
    • /
    • 2019
  • Purpose: This study was conducted to evaluate the physicochemical properties of different batches of Saururus chinensis using different roasting temperature that were dried at different using different roasting temperatures and their were determined the antioxidative activities of water and 70% ethanol extracts. Methods: Extracts were examined for the total phenolic acid content, the and flavonoids contents and the antioxidant properties, including DPPH radical scavenging activity, ABTs scavenging activity and, the reducing power. Results: Moisture content was significantly higher in the LSC and the crude ash content was significantly higher in the HSC. The crude protein content was higher in the LSC (although not significantly), and the crude fat and carbohydrate contents were higher in the HSC (although not significantly). The total phenolic content was lower in the samples extracted with water, but there was no significant difference. However, the extracts extracted with 70% ethanol at a high drying temperature were significantly higher. The low temperature and high drying temperature batches of Saururus chinensis were significantly higher in the samples extracted with 70% ethanol than those extracted with 70% ethanol. The total phenolic acid content, the total flavonoid content and the electron donating ability were highest in the ethanol extract of Saururuschinensis treated at a high temperature. However, the ABTs radical activity was highest in the water extracted, high-temperature treated Saururuschinensis. The 70% ethanol extract of high temperature roasted Saururuschinensis had the highest antioxidative activities of all the Saururuschinensis batches. Conclusion: The total phenolic acid contents, total flavonoid contents, electron donating activity and reducing power activity were highest in all the 70% ethanol extraction batches of the high-temperature treated samples.

Antiadipogenic Activity of Solvent-partitioned Fractions from Limonium tetragonum in 3T3-L1 Preadipocytes (갯질경이 용매분획물의 3T3-L1전지방세포에서의 지방생성억제 효과)

  • Kwon, Myeong Sook;Kim, Jung-Ae;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Jung Im;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • Limonium tetragonum, an edible halophyte that grows on salt marshes in Korea, is thought to possess various health benefits (e.g., antioxidant, antitumor, and hepatoprotective). In the present study, different solvent partitioned subfractions, water ($H_2O$), buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and hexane (n-hexane), from crude extract of L. tetragonum were tested for their ability to prevent adipogenesis in differentiating 3T3-L1 preadipocytes. The treatment of differentiating 3T3-L1 preadipocytes with L. tetragonum subfractions (LTFs) resulted in suppressed adipogenesis and reduced expression of adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), CCAATT/enhancer-binding protein alpha ($C/EBP{\alpha}$), and sterol regulatory element-binding protein 1c (SREBP-1c) at both mRNA and protein levels. In addition, the LTF treatment notably decreased the levels of phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) pathway in association with $PPAR{\gamma}$-linked adipogenesis. Among all the tested LTFs, $H_2O$ and n-hexane were the most effective in lowering lipid accumulation and regulating the adipocyte differentiation via $PPAR{\gamma}$ pathway. Taken together, the results indicated that the $H_2O$ and n-hexane LTFs contain bioactive compounds that may exhibit significant antiadipogenesis activity by downregulation of the $PPAR{\gamma}$ pathway and inactivation of the MAPK signal pathway in 3T3-L1 preadipocytes.

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Study on Skin pH Improvement Effect through Regulation of Na+/H+ Exchanger 1 (NHE1) Expression of Prunella vulgaris Extract and Its Active Compound, Caffeic Acid (꿀풀 추출물과 그 활성 화합물인 카페인산의 Na+/H+ exchanger 1 (NHE1) 발현 조절을 통한 피부 pH 개선 효과에 대한 연구)

  • No-June Park;Sim-Kyu Bong;Sang-A Park;Gi Hyun Park;Young Chul Ko;Hae Won Kim;Su-Nam Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • This study was conducted to discover substances that regulate skin surface acidification using human epidermal keratinocyte cell lines, and to investigate their effects on the moisturizing ability and skin barrier function of the stratum corneum. Prunella vulgaris (P. vulgaris) is an herb widely distributed in Northwest Africa and North America that has been studied for its anti-apoptotic, antioxidant, and anti-inflammatory effects. However, research on the regulation of NHE1 expression and the restoration of skin barrier function has not been conducted. Analysis of P. vulgaris revealed the presence of rosmarinic acid and caffeic acid as active ingredients, which were tested for toxicity in human epidermal keratinocyte cell lines (HaCaT), and showed no toxic effects were observed at high concentarion (100 ㎍/mL or 100 µM). It is known that sodium-hydrogen ion exchange pumps (NHE1) decrease in expression in aging skin to maintain the acidic pH of the stratum corneum, and it is hypothesized that this decrease plays an important role in the impaired restoration of skin barrier function in aging skin. P. vulgaris extract and caffeic acid increased the expression of NHE1 in keratinocytes, increased the expression of natural moisturizing factor (NMF) precursor filaggrin and ceramide synthesis enzyme serine palmitoyl transferase (SPT). In addition, P. vulgaris and caffeic acid decreased the extracellular pH of keratinocytes, indicating a direct effect on skin pH regulation. Taken together, these results suggest that P. vulgaris and caffeic acid can regulate skin pH through NHE1 modulation, and may help to restore skin barrier function by increasing NMF and ceramide synthesis. These results show the possibility that honeysuckle and caffeic acid can have a positive effect on skin health, and can be the basis for the development of new skin protection products using them.