• Title/Summary/Keyword: Antimicrobial agent

Search Result 555, Processing Time 0.023 seconds

Reuse of Oyster Shell Waste as Antimicrobial Water Treatment Agent by Silver Ion Exchange

  • Jo, Myung-Chan;Byeong-II Noh;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.185-193
    • /
    • 2000
  • A water treatment agent with antimicrobial activity(Ag-Os) was created by exchanging silver ion($Ag^{+}$) on calcined oyster shell powder. The desorption of the exchanged silver ion was negligible, thereby indicating a stable antimicrobial water treatment agent. The sterilization effect of Ag-Os on underwater microorganisms was then investigated. An MIC (Minimum Inhibitory Concentration) test result indicated that Ag-Os had an excellent sterilization effect on G-germs, such as Escherichia coli and Pseudomonas aeruginosa. Most germs were annihilated with an Ag-Os concentration of 200 ppm and contact time of 60 minutes. The sterilization effect was mainly dependent on the contact time. The zeta potential of the Ag-Os powder adsorbed on sand was measured relative to the concentration of exchanged silver ion. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the Ag-Os powder adsorbed on sand also increased. Accordingly, this result indicated that a higher silver ion than ion exchange capacity was present on the particle surface due to adsorption. Consequently, this increased concentration of exchanged silver ion would appear to significantly enhance the sterilization power.

  • PDF

Rational Use of Antimicrobial Agents in Traumatic Simple Wounds (외상으로 인한 상처의 치료에 있어서 선택적 항균제의 효과 및 적응증에 관한 연구)

  • Kim, Jae Eun;Suh, Joo Hyun;Choi, Yoon Hee;Bae, Hyun A;Jung, Jin Hee;Eo, Eun Kyung;Cheon, Young Jin;Jung, Koo Young
    • Journal of Trauma and Injury
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • Purpose: The primary goal of wound management is to avoid infection. Wounds in all patients presenting to the Emergency Department are contaminated with bacteria. Despite this, there is a low incidence of infection. Unfortunately, physicians continue to use antimicrobial agents indiscriminately. The authors intended to determine the effect of selective antimicrobial agents and the indications for appropriate antimicrobial agent use in traumatic simple wounds. Methods: This prospective study was performed from Jul. 2005 to Aug. 2005. A pilot study had been performed from Nov. 2003 to Jul. 2004 at the Ewha Woman's University Mokdong Hospital. Structured data sheets were completed at the times of the patient's visits to the Emergency Department and to the Outpatient Department for follow-up. Infection was determined at the time of follow-up. The indications of antimicrobial agent use are immunocompromised patients, wounds contaminated for 3 hours or longer, devitalized tissue, and extremity wounds except hand wounds caused by sharp objects. Results: The study enrolled 216 injured patients. The general characteristics of patients and wounds between the two groups were not significantly different. The antimicrobial agent use and infection rate of the pilot study were 227 cases (90.4%) and 10 cases (4.0%), and those of this study were 100 cases (46.3%) and 9 cases (4.1%). In this study, antibiotic use was reduced to almost half compared with the previous study, but the infection rate was similar (p<0.001). Conclusion: Rational use of antimicrobial agents in simple wounds reduced the use of antimicrobial agents in the Emergency Department without increasing the infection rate.

The influential Investigation and Surface Change by Concentration to the Antimicrobial Agent and Insecticide on Metallic Material (항균·방충제의 농도에 따른 금속재질에 미치는 영향성 및 표면변화 조사)

  • Lee, Jae Hui;Cho, Nam Chul;Lee, Sang Bae
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.361-372
    • /
    • 2015
  • The experiment attempts to find out the effect of the mixture of the antimicrobial agent and insecticide on metallic material including Silver(99.9%), Copper(99.9%), Lead(99.9%) and Iron(99.5%) by Oddy test. The mixtures of the antimicrobial agent and insecticide were prepared in 60ml; with the standard concentration of 17.5% in B77 Essential oil mixture, one for mixture of concentration of ${\pm}1{\sim}2%$ and insect repellent material; the other for mixture of low concentration and antimicrobial agent(BS-2 and BS-3) material. After Oddy test, we investigated the variation in the surface of the samples by visual inspection, weighing, color measurement and SEM-EDS analysis. The result showed that Lead had the biggest change in the surface, and Copper had the biggest change in the color. In addition, changes in the samples before and after the experiment were found to be greatest at concentration of 19% of Essential oil mixture of the antimicrobial agent and insecticide. Also, B78 Essential oil mixture produce change in samples. It means when the concentration of oil mixture rises, the variation of the samples gets bigger. And, the low concentration of mixture including B77 Essential oil mixture and B78 Essential oil mixture also produce big change in the samples. However, the low concentration of B77 Essential oil mixture that do not contain B78 Essential oil mixture was able to confirm that the change of the surface is not large.

Antimicrobial resistance rates changes according to the amount of the antimicrobial agent in clinically important strain isolated from blood cultures (혈액배양에서 분리된 임상적 주요 균주의 항균제사용량에 따른 내성률 변화)

  • Kim, Jae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.653-659
    • /
    • 2016
  • The purpose of the study is to investigate the correlation between the amount of antimicrobial agent (Defined Daily Dose, DDD) and antimicrobial resistance rate (%). The treatment of infectious diseases is becoming increasingly difficult, due to the increase in the number of multi-drug resistant bacteria, making it a clinically significant problem. Among the various factors, antimicrobial abuse is a major cause of antimicrobial resistance. The study was conducted on inpatients in a secondary university hospital in the central region utilizing the hospital's computerized statistical data and microbiological program of laboratory medicine from January 2010 to December 2014 pertaining to the dose of antimicrobial drugs for Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli strains isolated from blood culture. We analyzed the antimicrobial resistance rate per dose with the Pearson correlation coefficient. A significant (positive?) correlation was detected between the cefepime dose and the resistance of E. coli (P<0.033; r=0.907), while a significant negative correlation was found between the tobramycin dose and the resistance of E.coli. (P<0.028; r=-0.917). The aminoglycoside resistance of A. baumannii showed a significant negative correlation (P<0.048; r=-0.881), and the aminoglycoside resistance of E. coli showed a significant negative correlation as well (P<0.001; r=-0.992). In conclusion, the amount of antimicrobial agent (Defined Daily Dose, DDD) (is partly related to) the bacterial strain and its antimicrobial resistance rate (%).

The efficiency of topical anesthetics as antimicrobial agents: A review of use in dentistry

  • Kaewjiaranai, Thanawat;Srisatjaluk, Ratchapin Laovanitch;Sakdajeyont, Watus;Pairuchvej, Verasak;Wongsirichat, Natthamet
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • Topical anesthetics are commonly used in oral & maxillofacial surgery to control pain in the oral cavity mucosa before local anesthetic injection. These anesthetic agents come in many forms, developed for different usages, to minimize adverse reactions, and for optimal anesthetic efficiency. Earlier studies have revealed that these agents may also limit the growth of microorganisms in the area of anesthetic application. Many topical anesthetic agents show different levels of antimicrobial activity against various bacterial strains and Candida. The dosage of local anesthetic agent used in some clinical preparations is too low to show a significant effect on microbial activity. Efficiency of antimicrobial activity depends on the local anesthetic agent's properties of diffusion within the bloodstream and binding efficiency with cytoplasmic membrane, which is followed by disruption of the bacterial cell membrane. The antimicrobial properties of these agents may extend their usage in patients to both control pain and infection. To develop the topical local anesthetic optimal usage and antimicrobial effect, a collaborating antiseptic agent may be used to benefit the local anesthetic. However, more research is required regarding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of topical local anesthetic agents with drug interaction between anesthetics and antiseptic agents.

Antimicrobial Properties of Paper Treated with Acidic Liquid from Carbonized Rice Hull (왕겨초액 처리지의 항균 특성)

  • Min, Choon-Ki;Jo, Joong-Yeon;Shin, Jun-Sub;Lee, Se-Eun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.72-76
    • /
    • 2011
  • Antimicrobial activities of the Acidic Liquid originated from Carbonized Rice Hull(ALCRH) and the paper treated with ALCRH were investigated to apply ALCRH to functional paper products as a natural antimicrobial agent. ALCRH showed antimicrobial activity for bacteria and yeast, with higher performance for bacteria than for yeast. Antimicrobial activity was not developed on paper coated with ALCRH by bar coater probably due to the evaporation of antimicrobial compounds of ALCRH from the paper surface with time. Saturation of paper with ALCRH was essential to develop antimicrobial activity on the paper. Dipping paper in ALCRH solution was recommended as one of the effective ways to make antimicrobial paper.

Antimicrobial Activities of Botanical Antimicrobial Agent-Grapefruit Seed Extract Mixture for the Preparation of Anitimicrobial Packaging Paper (항균포장지 제조용 식물성 자몽종자추출물제재의 항균특성)

  • Cho Sung-Hwan;Kim Chul-Hwan;Park Woo-Po
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.411-416
    • /
    • 2004
  • Botanical antimicrobial agent-grapefruit seed extract mixture(BAAG), which could be applied to the preparation of antimicrobial packaging paper, was investigated in order to prove the preservative function of fruits and vegetables. HAAG showed remarkable antimicrobial effects against Fusarium solani Botrytis cinerea, Pencillium crustosum, Erwinia carotovora, Phoma destructiva and Alternaria radicina causing the postharvest decay of fruits and vegetables. We have examined that HAAG could inhibit the growth of microorganims when treated with more than 500 $\mu$g/mL concentration. The activities of HAAG were stable in the wide spectrum of pH and temperature. Direct visualization of microbial cells by using scanning electron microscope showed the loss of microbial cell membrane function, which was destroyed by treating with the dilute solutions of HAAG. We could confirm that HAAG be an antimicrobial agent for the preparation of antimicrobial packaging paper.

Antimicrobial Activities of Extracts of Camellia sinensis (L.) O. Kuntze and Profile of Antimicrobial Agents Resistance for Carbapenem-Resistant Enterobacteriaceae

  • Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.288-292
    • /
    • 2019
  • In vitro antimicrobial activities of hot water extracts of Camellia sinensis (L.) O. Kuntze, for carbapenem-resistant Enterobacteriaceae (CRE) were compared to commonly used conventional antimicrobial agents. CRE was not only resistant to imipenem, meropenem or ertapenem, but also to various antimicrobial agents, such as amikacin (> $128{\mu}g/mL$). The hot water extracts of Camellia sinensis (L.) O. Kuntze had the lowest MIC ($0.06{\sim}0.5{\mu}L/mL$) of the carbapenem-resistant E. coli, K. pneumoniae, and Enterobacter spp. tested, and it was possible more potent than various conventional antimicrobial agents. Synergistic combinations of the extract with used commonly antimicrobial agents might even improve its antimicrobial chemotherapy property.

Antioxidative and Antimicrobial Activities of Cassia (Cinnamomum cassia) and Dill (Anethum graveolens L.) Essential Oils

  • Chung, Hai-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.300-305
    • /
    • 2004
  • Antioxidative and antimicrobial activities of essential oils of cassia (Cinnamomum cassia) and dill (Anethum graveolens L.) were investigated. Essential oils used in this study were added to soybean oil and stored at $65^{\circ}C$ for 9 days to examine their antioxidant activities using peroxide value (POV). The results showed that dill essential oil possessed a higher antioxidant activity than cassia essential oil. Strong antimicrobial activity was observed in cassia essential oil, whereas low activity was observed in dill essential oil against the test microorganisms. Heat stability and cell growth inhibitions were investigated with different concentrations of cassia oil. Results showed that cassia oil had thermal stability in a wide range of $70-160^{\circ}C$. Cassia inhibited cell growth of Bacillus cereus KCTC 1022, Micrococcus luteus A TCC 9341 and Escherichia coli ATCC 25922, but not great on Salmonella typhimurium ATCC 14028 at level of 200 ppm. In conclusion, the results indicate that dill essential oil could be a potential candidate for an antioxidative agent, while cassia essential oil could be suitable for use as an antimicrobial agent in the food industry.