• Title/Summary/Keyword: Antimicrobial Film

Search Result 100, Processing Time 0.036 seconds

Tetracycline-incorporated Silk Fibroin Films

  • Kim, Jong-Ho;Shin, Bong-Seob;Jeon, Jong-Young;Kweon, Hae-Yong;Jo, You-Young;Lee, Heui-Sam;Lee, Kwang-Gill
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.1
    • /
    • pp.129-132
    • /
    • 2012
  • Silk fibroin films incorporated with tetracycline was prepared and characterized by Fourier-transform infrared spectrometer and differential scanning calorimeter and examined antibacterial effect. The conformation of silk fibroin was changed from random coil to $\hat{a}$ sheet structure with incorporation of tetracycline. Antibacterial activity of the materials was evaluated against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus epidermis, and Staphylococcus aures) using agar plate method showing clear inhibition zone around tetracycline silk film. It is concluded that tetracycline-incorporated SF films are highly effective against bacteria.

Preparation and Characteristics of Poly(m-phenyleneisophthalamide)/Poly Amic Acid Blended Film (m-Aramid/PAA 블렌딩 필름의 제조 및 특성)

  • Jisu Lee;Ayoung Jang;Ji Eun Gwon;Seung Woo Lee;Sang Oh Lee;Jaewoong Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.221-230
    • /
    • 2023
  • Meta-aramid and polyamic acid were separated and the manufactured films were analyzed for their integration and logarithmic properties. The miscibility of meta-aramid and polyamic acid was analyzed by Fourier transform infrared spectroscopy and scanning electron microscopy. Using calorimetric analysis and differential scanning calorimetry, the storage of meta-aramid and polyamic acid, indicated on the right side of the column, was analyzed. It was confirmed that the initial thermal resistance occurs because the polyamic acid is accounted for in the meta-aramid, and the glass transition temperature and persistence phenomenon are explained.

Preparation of Makgeolli Residue Protein Film Containing Wasabi Extract and Its Application (고추냉이 추출물을 함유한 막걸리박 단백질 필름 제조 및 응용)

  • Lee, Ji-Hyeon;Lee, Ji-Hyun;Yang, Hyunju;Song, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.268-274
    • /
    • 2015
  • Makgeolli residue protein (MRP) was extracted from byproduct of makgeolli processing, and MRP films containing various plasticizers were prepared. Among the plasticizers used in this study, MRP film containing glycerol-sorbitol (1:2) showed the most desirable mechanical properties. In addition, MRP films containing wasabi extract (WE) were prepared by incorporating different amounts (0, 0.8, 1.0, and 1.2%) of WE into film-forming solution. Tensile strength, elongation at break, and moisture content of MRP films decreased with addition of WE as compared with the control. However, MRP films containing WE showed antimicrobial activities against Escherichia coli O157:H7 and Listeria monocytogenes. Application of MRP film containing 1.0% WE to beef packaging decreased populations of E. coli O157:H7 and L. monocytogenes after storage at $4^{\circ}C$ for 8 days by 1.1 and 0.41 log CFU/g, respectively, compared with those of the control. In addition, the peroxide value and 2-thiobarbituric acid reactive substance value decreased by 53 and 56%, respectively, compared to the control. Therefore, these results suggest that MRP film containing WE can be used to improve the quality of beef during storage.

Preparation and Characterization of UV-cured Polyurethane Acrylate/ZnO Nanocomposite Films (자외선 경화형 폴리우레탄 아크릴레이트/ZnO 나노콤포지트 필름의 제조 및 특성 분석)

  • Jeon, Gwonyoung;Park, Su-il;Seo, Jongchul;Seo, Kwangwon;Han, Haksoo;You, Young Chul
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.610-616
    • /
    • 2011
  • A series of polyurethane acrylate/ZnO (PUA/ZnO) nanocomposite films with different ZnO contents were successfully prepared via a UV-curing system. The synthesis and physical properties including morphological structure, thermal properties, barrier properties and optical properties, and antimicrobial properties were investigated as a function of ZnO concentration. FTIR and SEM results showed that these PUA/ZnO nanocomposite films did not have a strong interaction between PUA and ZnO, which may lead to no increase in thermal stability. By incorporating ZnO nanoparticles, the UV blocking and antibacterial properties increased as the content of ZnO increased. Specially, the oxygen permeability in composite films changed from $2005cc/m^2/day$ to $150cc/m^2/day$ by adding the ZnO nanoparticle, which indicates that the PUA/ZnO nanocomposite films can be applied as good barrier packaging materials. Physical properties of the UV-cured PUA/ZnO nanocomposite film are strongly dependent upon the dispersion state of ZnO nanoparticles and their morphology in the films.

A Case Study on Performance Analysis of Antimicrobial Copper Film Attaching to Window for Responding to COVID-19 and Others (코로나19 등 대응을 위한 "유리창 부착용 항바이러스 동필름" 성능분석 사례연구)

  • Kim, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.23-40
    • /
    • 2021
  • In the era of the global coronal 19 pandemic, there is a risk of cross-infection in hospitals at the stage where treatments and vaccines are currently being developed and marketed, so individuals should enhance their acquired immunity and generalize their living systems by the performance of copper ions in the social environment. In order to prevent the spread of infection, the need for anti-bacterial film and its efficacy were analyzed through anti-viral performance tests based on research and development cases of worldwide and immemorial time. he Korea Construction Research Institute (KCL) has received anti-bacterial performance certification and anti-viral test scores from the "National Approval Performance Certification Agency." At the time, NCCP 43326 Human Corona virus (BetaCoV/Korea/KCDC03/2020), which was approved by the Centers for Disease Control and Prevention, was introduced to ensure that the activity rate of infected cells was satisfied in the anti-viral performance test. Anti-proliferation measures for the Corona 19 virus require a quality clinical trial study comparing the experimental group within the glass space where the antiviral copper film is constructed with the comparator of the same condition without copper film.

Effectiveness of Sodium Iodide Root Canal Filling Pastes in Primary Teeth (요오드화 나트륨을 사용한 유치 근관 충전재의 효과)

  • Soo Jin Chang;Yujin Kim;Junghwan Lee;Jongsoo Kim;Joonhaeng Lee;Mi Ran Han;Jisun Shin;Jongbin Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.2
    • /
    • pp.168-178
    • /
    • 2023
  • Objectives: This study aimed to compare the physical properties and antibacterial effectiveness of iodoform based root filling pastes, Vitapex® and Metapex®, with sodium iodide root filling paste (NaI paste) for primary teeth. Materials and Methods: The physical properties (flowability, film thickness, radiopacity) of the pastes were evaluated according to ISO 6876:2012. The antibacterial activity against Enterococcus faecalis strain (ATCC 6538) was evaluated using a direct contact test. Results: There was no significant statistical difference (p > 0.05) observed in the flow and film thickness of NaI paste when compared to the currently available root canal filling materials. The average flow capacities for Vitapex®, Metapex®, and NaI paste were 15.40 mm, 21.25 mm, and 20.01 mm, respectively. The average film thickness for Vitapex®, Metapex®, and NaI paste were 33.3 ㎕, 22.6 ㎕, and 25.0 ㎕, respectively. However, NaI paste showed lower radiopacity than the existing materials, and this difference was statistically significant (p < 0.05) NaI paste demonstrated higher antimicrobial activity than the available materials, and this difference was also statistically significant (p < 0.05). Conclusion: Compared to the existing commercialized root canal filling materials, NaI paste exhibited similar performance in terms of flow and film thickness, and superior antimicrobial activity against E. faecalis. Hence, NaI paste could be a promising root filling material for primary teeth and may be a potential alternative to existing materials.

Treatment of Korean Medical Herb Extracts Affects the Quality Characteristics of Vegetables (대황 및 황련추출물 처리에 따른 시설채소산물의 품질특성 변화)

  • 박우포;조성환
    • Food Science and Preservation
    • /
    • v.6 no.3
    • /
    • pp.276-280
    • /
    • 1999
  • To maintain the quality characteristics of vegetables, produce was dipped in Korean medical herb extracts (KMHE) such as Rheum palmatum L. or Coptis chinensis Franch with different concentration. Dipping in 500 ppm KMHE solution was suitable for the reduction or microbial load on cucumber, and 100 ppm KMHE solution was appropriate for others. Dipping time was suitable for produce about 10 minutes, and the temperature of dining solution had a limited effect cm the microbial load reduction. Antimicrobial activity of Coptis chinensis Franch and Rheum palmatum L. was maintained for cucumber and zucchini wrapped with polyvinylchloride film during storage at 10$^{\circ}C$.

  • PDF

Inhibitory Effects of Natural Antimicrobial Agenton Postharvest Decay in Fruits and Vegetables under Natural Low Temperature (천연 항균제처리를 병용한 과채류의 자연 저온저장기술 개발에 관한 연구)

  • 조성환;정진환;류충호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.315-321
    • /
    • 1994
  • In order to prevent the postharvest decay and to promote the freshness retention of fruits and vegetables grapefruit seed extract(GFSE), natural microorganism control agent, was applied to the preservation of fresh fruits and vegetables. Freshfruits and vegetables treated with GFSE and stored in polyethylene film (0.1mm) at 1$0^{\circ}C$-15$^{\circ}C$ of natural low temperature low kept better qualities in color and texture than the GFSE -not- treated control. The treatment using GFSE ina 250ppm to 500ppm concentration seemed to be an effective one for the control of Botrytis cinerea isolated in red wine grapes. After 4 weeks of storage the firmness rate of cucumbers treated with the dilute GFSE was four times higher than that of non-treated ones. GFSE showed effective inhibitory action towards plant pathological bacteria and fungi which were involved in the decay of fruits and vegetables. Minimum inhibitory concentrations of GFSE towards them were in the range of 250ppm to 500ppm .Direct visualization of microbial cells and spores using electron microscopy showed microbial cells and fungal spores the function of which was destroyed by treating with the dilute solutions of GFSE. It was observed that GFSE would reduced disease damages and have bactericide & fungicide properties during the storage of such fruits and vegetables as egg plant, wild edible greens , kumquat, and kiwi fruit.

  • PDF

Antimicrobial polyurethane film manufacturing complex Apatite, and the characteristics (아파타이트를 복합한 항균 폴리우레탄 필름제조 및 특성)

  • Kwon, Oh-Kyung;Kim, Seok-Hoon;Park, Sun-Hwa;Min, Byung-Gil
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.14-14
    • /
    • 2011
  • 폴리우레탄 필름을 이용하여 등산복, 스포츠 웨어, 보호복 등 많은 의복이 제조되고 있으며, 현재 폴리우레탄 필름에 항균성을 부여하여 메디컬 소재에 적용되고 있다. 항균성을 부여하는 물질은 제올라이트. 수산화아파타이트, 실리카 겔을 이용한 많은 무기 항균제가 사용되고 있다. 이들중 특히 수산화아파타이트는 생체친화력 및 이온교환 능력이 우수하여 인공뼈 또는 인공치아로 사용되고, 환경분야에서는 이온교환수지로 중금속 제거를 위하여 사용되기도 한다. 본 연구에서는 폴리우레탄 필름 내부의 비드 간극 및 크기를 제어하여 비드콘 구조를 가지는 폴리우레탄 필름을 제조하였고 수산화아파타이트에 다양한 조건으로 은이온을 흡착시켜 은의 최적 흡착 조건을 설정하고 은이 흡착된 수산화아파타이트의 입자를 제어하여 다양한 종류의 입자를 제조하고 입자별 항균성을 평가하였다. 최종적으로 개발된 비드콘 폴리우레탄 필름과 은담지 수산화아파타이트를 여러가지 조건으로 복합화하여 항균성을 가지는 아파타이트복합 폴리우레탄필름을 제조하고 개발된 필름의 항균성 및 그 특성을 분석하여 보았다.

  • PDF

Development of Antimicrobial N-halamine containing Alkyl Chain for Paint (알킬기를 함유한 N-halamine을 이용한 페인트용 항균제의 개발)

  • Choi, Kwonyong;Kim, Tae-young;Yun, Sang-woo;Yoon, Jeyong;Lee, Jong-Chan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.45-47
    • /
    • 2011
  • Novel antibacterial N-halamine materials with alkyl group were prepared for paint application. Using E. coli and Fungi, antibacterial property of the dichloro hexyl isocyanuric acid (DCHICA) was determined and influences of the antibacterial agent's concentration and the bacteria test time on the antibacterial ability were also investigated. It was also observed that the film made using DCHICA showed better surface biocidal activity against the bacteria and fungi than that of dichloroisocyanuric acid (DCICA) in the absence of alkyl chains.