• Title/Summary/Keyword: Antigens, CD31

Search Result 3, Processing Time 0.018 seconds

Suppressed CD31 Expression in Sarcoma-180 Tumors after Injection with Toxoplasma gondii Lysate Antigen in BALB/c Mice

  • Pyo, Kyoung-Ho;Jung, Bong-Kwang;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.2
    • /
    • pp.171-174
    • /
    • 2010
  • The anti-tumorigenic effects of Toxoplasma gondii (RH) antigens were studied in a murine sarcoma-180 tumor model. To determine the anti-tumor effects, the reduction in tumor size and expression of CD31 (an angiogenesis marker in the tumor tissue) were examined after injection of BALB/c mice with T. gondii lysate antigen (TLA) or formalin-fixed, proliferation-inhibited, T. gondii tachyzoites. Tumors were successfully produced by an intradermal injection of sarcoma-180 cells with plain Matrigel in the mid-backs of mice. After injection with TLA or formalin-fixed T. gondii tachyzoites, the increase in tumor size and weight nearly stopped while tumor growth continued in control mice that were injected with PBS. CD31 expression in TLA-treated or formalin-fixed T. gondii-injected mice was lower than the control mice. Accordingly, the present study shows that the treatment of mice with formalin-fixed T. gondii or TLA in the murine sarcoma-180 tumor model results in a decrease of both tumor size and CD31 expression.

The Effects of Polydeoxyribonucleotide on the Survival of Random Pattern Skin Flaps in Rats

  • Chung, Kun Il;Kim, Han Koo;Kim, Woo Seob;Bae, Tae Hui
    • Archives of Plastic Surgery
    • /
    • v.40 no.3
    • /
    • pp.181-186
    • /
    • 2013
  • Background Partial or complete necrosis of a skin flap is a common problem. Polydeoxyribonucleotide (PDRN) can be extracted from trout sperm and used as a tissue repair agent. The aim of this study was to investigate whether PDRN could improve the survival of random pattern skin flaps in rats. Methods Twenty-two male Sprague-Dawley rats were randomly divided into two groups: the PDRN treatment group (n=11) and the control group (n=11). Caudally pedicled random pattern skin flaps were elevated on their dorsal skin and resutured. The treatment group received daily intraperitoneal administration of PDRN (8 mg/kg/day), and the control group received fluid vehicle (NaCl 0.9%, 8 mg/kg/day) from day 0 to day 6. On day 7, the flap survival was evaluated and the harvested tissue surrounding the demarcation line of the necrotic area was stained with H&E, anti-rat vascular endothelial cell growth factor (VEGF) antibody, and PECAM-1/CD31 antibody. Results The average necrotic area of the flap in the PDRN group was significantly smaller when compared with that of the control group. Histologic and immunohistochemical evaluation showed that granulation thickness score and VEGF-positive staining cells were marked higher in the PDRN group than in the control group. PECAM-1/CD31-positive microvascular densities were significantly higher in the PDRN group when compared with the control group. Conclusions This study confirms that PDRN improves the survival of random pattern skin flaps in rats. These results may represent a new therapeutic approach to enhancing flap viability and achieving faster wound repair.

Chondrogenesis of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood (사람 제대혈 유래 간엽줄기세포로부터 연골세포 분화)

  • Koh, Phil-Ok;Cho, Jae-Hyun;Nho, Kyoung-Hwan;Cha, Yun-Im;Kim, Young-Ki;Cho, Eun-Hae;Lee, Hee-Chun;Jung, Tae-Sung;Yeon, Seong-Chan;Kang, Kyung-Sun;Lee, Hyo-Jong
    • Journal of Veterinary Clinics
    • /
    • v.26 no.6
    • /
    • pp.528-533
    • /
    • 2009
  • In the current study, the mesenchymal stem cells (MSCs) isolated and propagated from the human umbilical cord blood (UCB) were tested for their capabilities of differentiation into chondrocytes in vitro. The mesenchymal progenitor cells (MPCs) collected from UCB were cultured in a low glucose DMEM medium with 10% FBS, L-glutamine and antibiotics. The human MSC colonies were positively stained by PAS reaction. When the immunophenotypes of surface antigens on the MSCs were analyzed by fluorescence-activated cell sorter (FACS) analysis, these cells expressed positively MSC-related antigens of CD 29, CD44, CD 90 and CD105, whereas they did not express antigens of CD14, CD31, CD34, CD45, CD133 and HLA-DR. Following induction these MSCs into chondrocytes in the chondrogenic differentiation medium for 3 weeks or more, the cells were stained positively with safranin O. We clearly confirmed that human MSCs were successfully differentiated into chondrocytes by RT-PCR and immunofluorescent stain of type-II collagen protein. These data also indicate that the isolation, proliferation and differentiation of the hUCB-derived MSCs in vitro can be used for elucidating the mechanisms involved in chondrogenesis. Moreover this differentiation technique can be applied to developing cell-based tissue regeneration or repair damaged tissues.