• Title/Summary/Keyword: Antigen process

Search Result 128, Processing Time 0.037 seconds

Radioimmunoscintigraphy Using IMACIS-1 in Gastrointestinal Cancer (IMACIS-1을 이용한 위장관 종양의 방사면역신티그램)

  • Sohn, Hyung-Sun;Kim, Choon-Yul;Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 1990
  • Most of the diagnostic methods currently used for the detection of neoplastic masses provide indirect evidence. To obtain greater specificity in the interpretation of neoplasias by in vivo methods, the immunological approach appears to be most promising. Two problems that interfered with progress in this field were the lack of tumor specific antigen and the lack of well-defined and reproducible antibodies. To improve the sensitivity and specificity of radioimmunoscintigraphy as a technique for tumor localization, the use of monoclonal antibodies, fragments of antibodies and single photon emission computerized tomography (SPECT) are reasonable. The obvious advantages of monoclonal antibodies are their homogeneity, their specificity for the immunizing antigen and the reaction with a single determinant-thus no large immunecomplexes with antigen are formed. Monoclonal antibody technique has recently provided an opportunity to reevaluate the role of nuclear medicine for the diagnosis of malignant diseases by using the immunological approach. Out first results by means of radioimmunoscintigraphy of CEA and CA 19-9 producing tumors using a cocktail of fragments F $(ab')_2$, of mocolonal antibodies to CA 19-9 and CEA labeled with $^{131}I$ (IMACIS-1) are reported. The aims of this investigation was to evaluate the role of immunoscintigraphy in patients with colorectal and other cancers for diagnosis of local recurrences and metastasis. This report contains results of the first 8 colorectal and pancreas cancer patients with the elevation of the level of serum CEA and/or CA 19-9. IMACIS-1 was injected intravenously during 30 minutes in 100 ml saline solution after skin test. Planar scintigrams were recorded 3, 5 and 7 days after the injection of the IMACIS-1. Anterior, lateral and posterior views of the liver as well as anterior and posterior views of the pelvis were obtained in each patients as an $^{131}I-antibody$ image. We were able to localize exactly the malignant process with the double-nuclide double-compound $^{99m}Tc\;^{131}I$ (Tc+l) scintigrams. In Tc & I double-nuclide scintigraphy, computer subtraction display provided more clear localization of the tumor. We compared the results of radioimmunoscintigraphy with CT, ultrasonograms, conventional scintigrams. The results were as follows: 1) The sensitivity and specificity of radioimmunoscintigraphy using the fragments $F(ab')_2$ of the cocktails of CEA and CA 19-9 monoclonal antibodies were 80% and 100% respectively. 2) Tumor detection rate was not proportionated to the level of serum tumor markets. 3) Second tracer technique was essential for tumor localization as an anatomic landmark using double-nuclide scintigraphy. 4) A slow infusion of the antibodies was necessary to prevent the formation of large immune complexes. 5) Tumor/non-tumor radioactivity was most elevated at 7 days delayed imaging. 6) Using planar scintigraphic technique of $^{131}I$ labeled monoclonal antibodies are possible for imaging most of the tumors.

  • PDF

Photoimmunology -Past, Present and Future-

  • Daynes, Raymond A.;Chung, Hun-Taeg;Roberts, Lee K.
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 1986
  • The experimental exposure of animals to sources of ultraviolet radiation (UVR) which emit their energy primarily in the UVB region (280-320nm) is known to result in a number of well-described changes in the recipient's immune competence. Two such changes include a depressed capacity to effectively respond immunologically to transplants of syngeneic UVR tumors and a markedly reduced responsiveness to known inducers of delayedtype (DTH) and contact hypersensitivity (CH) reactions. The results of experiments that were designed to elucidate the mechanisms responsible for UVR-induced immunomodulation have implicated: 1) an altered pattern of lymphocyte recirculation, 2) suppressor T cells(Ts), 3) deviations in systemic antigen presenting cell (APC) potential. 4) changes in the production of interleukin-1-like molecules, and 5) the functional inactivation of epidermal Langerhans cells in this process. The exposure of skin to UVR, therefore, causes a number of both local and systemic alterations to the normal host immune system. In spite of this seeming complexity and diversity of responses, our recent studies have established that each of the UVR-mediated changes is probably of equal importance to creating the UVR-induced immunocompromised state. Normal animals were exposed to low dose UVR radiation on their dorsal surfaces under conditions where a $3.0\;cm^2$ area of skin was physically protected from the light energy. Contact sensitization of these animals with DNFB, to either the irradiated or protected back skin, resulted in markedly reduced CH responses. This was observed in spite of a normal responsiveness following the skin sensitization to ventral surfaces of the UVR-exposed animals. Systemic treatment of the low dose UVR recipients with the drug indomethacin (1-3 micrograms/day) during the UVR exposures resulted in a complete reversal of the depressions observed following DNFB sensitization to "protected" dorsal skin while the altered responsiveness found in the group exposed to the skin reactive chemical through directly UVR-exposed sites was maintained. These studies implicate the importance of EC as effective APC in the skin and also suggest that some of the systemic influences caused by UVR exposure involve the production of prostaglandins. This concept was further supported by finding that indomethacin treatment was also capable of totally reversing the systemic depressions in CH responsiveness caused by high dose UVR exposure (30K joules/$m^2$) of mice. Attempts to analyze the cellular mechanisms responsible established that the spleens of all animals which demonstrated altered CH responses, regardless of whether sensitization was through a normal or an irradiated skin site, contained suppressor cells. Interestingly, we also found normal levels of T effector cells in the peripheral lymph nodes of the UVR-exposed mice that were contact sensitized through normal skin. No effector cells were found when skin sensitization took place through irradiated skin sites. In spite of such an apparent paradox, insight into the probable mechanisms responsible for these observations was provided by establishing that UVR exposure of skin results in a striking and dose-dependent blockade of the efferent lymphatic vessels in all peripheral lymph nodes. Therefore, the afferent phases of immune responses can apparently take place normally in UVR exposed animals when antigen is applied to normal skin. The final effector responses, however, appear to be inhibited in the UVR-exposed animals by an apparent block of effector cell mobility. This contrasts with findings in the normal animals. Following contact sensitization, normal animals were also found to simultaneously contain both antigen specific suppressor T cells and lymph node effector cells. However, these normal animals were fully capable of mobilizing their effector cells into the systemic circulation, thereby allowing a localization of these cells to peripheral sites of antigen challenge. Our results suggest that UVR is probably not a significant inducer of suppressor T-cell activity to topically applied antigens. Rather, UVR exposure appears to modify the normal relationship which exists between effector and regulatory immune responses in vivo. It does so by either causing a direct reduction in the skin's APC function, a situation which results in an absence of effector cell generation to antigens applied to UVR-exposed skin sites, inhibiting the capacity of effector cells to gain access to skin sites of antigen challenge or by sequestering the lymphocytes with effector cell potential into the draining peripheral lymph nodes. Each of these situations result in a similar effect on the UVR-exposed host, that being a reduced capacity to elicit a CH response. We hypothesize that altered DTH responses, altered alloresponses, and altered graft-versus-host responses, all of which have been observed in UVR exposed animals, may result from similar mechanisms.

  • PDF

Enhanced Antigen Delivery Systems Using Biodegradable PLGA Microspheres for Single Step Immunization

  • Cho, Seong-Wan;Kim, Young-Kwon
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2006
  • To demonstrate their possibilities as an enhanced vaccine delivery system, protein-loaded Poly lactide glycolide copolymer (PLGA) microspheres were prepared with different physical characteristics. Ethyl acetate (EA) solvent extraction process was employed to prepare microspheres and the effects of process parameters on drug release properties were evaluated. The biodeuadability of microspheres was also evaluated by the pH change and GPC (Gel permeation chromatography). Primary IgG antibody responses in BALB/c mice were compared with protein saline solutions as negative controls and adsorbed alum suspensions as positive controls after single subcutaneous injection for in vivo studies. The microspheres showed a erosion with a highly porous structure and did not keep their spherical shape at 45 days and this result could be confirmed by GPC. In vitro release of proteinous drug showed initial burst effect in all batches of microspheres, followed by gradual release over the next 4 weeks. PLGA microspheres were degraded until 45 days and the secondary structure of OVA was not affected by the preparation method. Enzyme-linked immunosorbent assays demonstrated that the single subcutaneous administrations of OVA-loaded PLGA microspheres induced enhanced serum IgG antibody response in comparison to negative and positive controls. These results demonstrated that microspheres providing the controlled release of antigens might be useful in advanced vaccine formulations for the parenteral carrier system.

  • PDF

Production of virus-like particles of nervous necrosis virus displaying partial VHSV's glycoprotein at surface and encapsulating DNA vaccine plasmids

  • Yang, Jeong In;Bessaid, Mariem;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.33 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • In order to use nervous necrosis virus (NNV) virus-like particles (VLPs) as a delivery tool for heterologous antigens or plasmids, we attempted to produce red-spotted grouper nervous necrosis virus (RGNNV) VLPs displaying a partial region of viral hemorrhagic septicemia virus (VHSV) glycoprotein at the surface and VLPs that are harboring DNA vaccine plasmids within the VLP. A peptide encoding 105 amino acids of VHSV glycoprotein was genetically inserted in the loop region of NNV capsid gene, and VLPs expressing the partial part of VHSV glycoprotein were successfully produced. However, in the transmission electron microscope analysis, the shape and size of the partial VHSV glycoprotein-expressing NNV VLPs were irregular and variable, respectively, indicating that the normal assembly of capsid proteins was inhibited by the relatively long foreign peptide (105 aa) on the loop region. To encapsulate by simultaneous transformation with both NNV capsid gene expressing plasmids and DNA vaccine plasmids (having an eGFP expressing cassette under the CMV promoter), NNV VLPs containing plasmids were produced. The encapsulation of plasmids in the NNV VLPs was demonstrated by PCR and cells exposed to the VLPs encapsulating DNA vaccine plasmids showed fluorescence. These results suggest that the encapsulation of plasmids in NNV VLPs can be done with a simple one-step process, excluding the process of disassembly-reassembly of VLPs, and NNV VLPs can be used as a delivery tool for DNA vaccine vectors.

Dynamic behavior control of a collective autonomous mobile robots using artificial immune networks (인공면역네트워크에 의한 자율이동로봇군의 동적 행동 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.124-127
    • /
    • 1997
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is simulated and suppressed by other robot using communication. Finally much simulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy.

  • PDF

Negative Selection Algorithm for DNA Pattern Classification

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.190-195
    • /
    • 2004
  • We propose a pattern classification algorithm using self-nonself discrimination principle of immune cells and apply it to DNA pattern classification problem. Pattern classification problem in bioinformatics is very important and frequent one. In this paper, we propose a classification algorithm based on the negative selection of the immune system to classify DNA patterns. The negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes ${\eta}$ groups of antigenic receptor for ${\eta}$ different patterns, these receptor groups can classify into ${\eta}$ patterns. We propose a pattern classification algorithm based on the negative selection in nucleotide base level and amino acid level. Also to show the validity of our algorithm, experimental results of RNA group classification are presented.

  • PDF

Eosinophilic Myelitis in the Cervical Cord Mimicking Intramedullary Cord Tumor

  • Park, Cheon Wook;Choe, Woo Jin;Chun, Young Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.410-413
    • /
    • 2012
  • Eosinophilic myelitis (EM) or atopic myelitis is a rare disease characterized by a myelitic condition in the spinal cord combined with allergic process. This disease has specific features of elevated serum IgE level, active reaction to mite specific antigen and stepwise progression of mostly the sensory symptoms. Toxocariasis can be related with a form of EM. This report describes two cases of cervical eosinophilic myelitis initially considered as intramedullary tumors. When a differential diagnosis of the intramedullary spinal cord lesion is in doubt, evaluation for eosinophilic myelitis and toxocariasis would be beneficial.

Fabrication of Biochip Using Gray-scale Photolithography (Gray-scale photolithography를 이용한 바이오칩 제작)

  • Bae, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.137-141
    • /
    • 2008
  • Biochip, which implements bioanalytical process on a tiny surface, is one of candidates for medical diagnosis, drug screening, and molecular sensing. In general, a type of biochip based on microfluidics is composed of microcomponents including microchannel, pump, and valve, which require complicated processes. In this study, gray-scale photolithography(GSPL) was applied to fabricate a biochip with multiple layers. A mould for casting PDMS(polydimethylsiloxane) channel, was fabricated using GSPL. A gray-photomask was prepared by printing gray patterns on a high-quality glossy paper followed by photoreducing by 10:1 onto the photo-film. The formation of multiple layers was studied according to the change of gray level of pattern and the developing time. A biochip composed of a weir(multiple layer structure) and a reaction chamber in a single microchannel was fabricated in a glass plate. Finally, we investigated the application of biochip to antigen-antibody reaction by packing the microbead coated with antibody.

Polymeric Materials for Molecular Recognition

  • Ki, Chang-Do;Lee, Kang-Won;Chang, Ji-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.172-172
    • /
    • 2006
  • Molecular imprinting constitutes a valuable method of preparing polymeric materials with specific binding properties. The most conspicuous merit of molecular imprinting is that structurally three-dimensional recognition sites can be introduced into a polymer matrix with ease and low cost when compared with the complicated process of biological system for antigen and antibody. We used a thermally reversible bond for the preparation of the monomer-template complex, which allowed us to remove the template easily by means of a simple thermal reaction and to simultaneously introduce various functional groups into the cavity. This method is especially propitious for developing artificial receptors for molecules lacking strongly interactive groups.

  • PDF

Actin Engine in Immunological Synapse

  • Piragyte, Indre;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.71-83
    • /
    • 2012
  • T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.