• 제목/요약/키워드: Antifungal mechanism

검색결과 77건 처리시간 0.028초

백부근(百部根)에 관(關)한 문헌적(文獻的) 고찰(考察) (효능(效能) 및 약리작용(藥理作用)을 중심(中心)으로) (Study of Literature on RADIX STEMONAE(Investigation of efficacy and pharmacological action on RADIX STEMONAE))

  • 최해윤;김종대
    • 대한한의학방제학회지
    • /
    • 제7권1호
    • /
    • pp.65-76
    • /
    • 1999
  • According to the study of literature on RADIX STEMONAE about its efficacy, pharmacological action, and clinical adaptive disease, the results are as follows; 1. About the efficacy of RADIX STEMONAE, it is known as moistening the lungs to arrest cough, and intestinal parasites from ancient to now, and dispelling phlegm is also known. 2. The clinical adaptation of RADIX STEMONAE is chronic bronchitis, pertussis, pulmonary tuberculosis in respiratory disease, and ascaricide for Ascaris, Enterobius vermicularis or eczema, pruritus, destroy louse for endermic liniment. 3. The pharmacological action of RADIX STEMONAE are antitussive, tuberculostatic, anthelmintic, antibacterial, antivirus, antifungal. 4. The antitussive mechanism of RADIX STEMONAE is central inhibitor for cough center of medulla oblongata, and the mechanisms of bronchial smooth muscle relax, and expectorant is also known.

  • PDF

INTERACTION OF TENECIN FRAGMENTS WITH LIPOSOMES

  • Park, Myeong-Jun;Cho, Hyun-Sook;Hong, Sung-Yu;Yoon, Jeong-Hyeok;Lee, Keun-Hyeong;Moon, Hong-Mo;Cheong, Hong-Seok
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.37-37
    • /
    • 1996
  • Tenecin fragments are antimicrobial and antifungal peptide from Tenebrio molitor with highly positive charged amino acid residues. To elucidate their membrane selectivity and molecular mechanism, various forms of tenecin fragments were synthesized, and their interaction with acidic phospholipid, Gram (+), fungal and human erythrocyte membrane were investigated by ANTS/DPX leakage, membrane binding and fusion assay. (omitted)

  • PDF

Azole Resistance Caused by Increased Drug Efflux in Candida glabrata Isolated from the Urinary Tract of a Dog with Diabetes Mellitus

  • Kim, Minchul;Lee, Hyekyung;Hwang, Sun-Young;Lee, Inhyung;Jung, Won Hee
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.426-429
    • /
    • 2017
  • A yeast-like organism was isolated from a urine sample of a 6-year-old neutered male miniature poodle dog with urinary tract infection, diabetes ketoacidosis, and acute pancreatitis. We identified the yeast-like organism to be Candida glabrata and found that this fungus was highly resistant to azole antifungal drugs. To understand the mechanism of azole resistance in this isolate, the sequences and expression levels of the genes involved in drug resistance were analyzed. The results of our analysis showed that increased drug efflux, mediated by overexpression of ATP transporter genes CDR1 and PDH1, is the main cause of azole resistance of the C. glabrata isolated here.

프로폴리스의 단백질합성저해활성 및 항진균활성 (Translation Inhibition Activity and Antifungal Activity of Korean Propolis)

  • 고아라;최갑성;최상기
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.64-69
    • /
    • 2010
  • 본 실험은 Propolis ethanol 추출물과, chloroform, ethyl acetate, butanol 등 4가지 용매로 더 추출한 분획틀을 이용하여 DPPH radical 소거능 실험과 항진균활성을 알아보았고, 고체배지 및 액체배지에서 항진균활성을 측정하였다. 또한 luciferase mRNA를 이용한 in vitro translation으로 이들 추출물에 의한 단백질합성에의 영향을 검토하였다. 첫 번째로, 액체배지에서의 항진균 활성을 실험한 결과 Candida glabrata, Candida lusitaniae 그리고 Cryptococcos neoformans 등의 성장저해율이 chloroform 분획 존재하에서 각각 39%, 41%, 48% 이었으며 ethyl acetate 분획 존재하에서 각각 25%, 24%, 13%로 측정되었다. 이 결과는 ethyl acetate 분획에 비해 chloroform 분획에 진균 성장 저해물질이 가장 많이 존재함을 나타낸다. 두 번째로, 동일한 비율로 희석한 프로폴리스 분획물들과 합성 항산화제인 BHT의 수소공여능을 비교하였을 때 Ethanol 추출물의 수소공여능은 합성항산화제인 0.1% BHT의 수소공여능보다 높았으며, 분획들 중에서 chloroform 분획이 가장 수소공여능이 높았다. 세 번째로, luciferase mRNA를 이용한 in vitro, translation 실험에서는 Propoliis ethanol 추출물이 단백질합성을 저해하는 것으로 관찰되었다. Propolis 분획물들 중에서 chloroform 분획이 단백질 합성을 가장 많이 저해하였다. 이와 같은 결과는 chloroform 분획물이 다른 분획에 비해 수소공여능, 진균성장 저해율 및 단백질합성 저해활성이 가장 큰 것으로 보여지므로 이 분획물에 대한 생화학적인 연구가 요구된다.

Diversity and Active Mechanism of Fengycin-Type Cyclopeptides from Bacillus subtilis XF-1 Against Plasmodiophora brassicae

  • Li, Xing-Yu;Mao, Zi-Chao;Wang, Yue-Hu;Wu, Yi-Xing;He, Yue-Qiu;Long, Chun-Lin
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.313-321
    • /
    • 2013
  • Bacillus subtilis XF-1, a strain with demonstrated ability to control clubroot disease caused by Plasmodiophora brassicae, was studied to elucidate its mechanism of antifungal activity against P. brassicae. Fengycin-type cyclopeptides (FTCPs), a well-known class of compounds with strong fungitoxic activity, were purified by acid precipitation, methanol extraction, and chromatographic separation. Eight homologs of fengycin, seven homologs of dehydroxyfengycin, and six unknown FTCPs were characterized with LC/ESI-MS, LC/ESI-MS/MS, and NMR. FTCPs (250 ${\mu}g/ml$) were used to treat the resting spores of P. brassicae ($10^7/ml$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm ($A_{260}$) and at 280 nm ($A_{280}$) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be cleaved by the FTCPs of B. subtilis XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol.

AGS 세포주에서 트랜스 신남알데하이드의 세포 사멸 유도 (trans-Cinnamaldehyde-Induced Apoptosis in AGS Cells)

  • 이선이;정주희
    • 한국식품위생안전성학회지
    • /
    • 제36권1호
    • /
    • pp.100-104
    • /
    • 2021
  • 트랜스 신남알데하이드(TCA)는 계피의 활성성분 중 하나로 알려져 있으며, 항바이러스, 항균, 항진균 뿐 아니라 일부 암세포주에서 항암 작용이 있다고 보고된 바 있다. 하지만, 위암세포주에서의 보고는 미비하며 그 작용기전에 대해서는 밝혀진 바가 없다. 본 연구에서는 위암 AGS 세포주에 대한 증식 억제작용 및 그 기전을 살펴보았다. TCA는 농도의존적으로 AGS 세포의 생존율을 억제하였다. AGS 세포 형태로 보아 TCA에 의한 세포사멸을 확인할 수 있었다. 그 기전을 확인하기 위하여, 세포사멸 관련 단백질의 발현양을 조사한 결과, TCA는 p53과 Bax의 단백질 발현을 증가시켰다. 또한, 분절된 caspase 9 및 PARP의 발현이 증가되는 것으로부터 TCA가 AGS 세포주의 세포사멸을 유도하였음을 알 수 있었다. 본 연구결과로부터 TCA가 위암에 대한 항암 활성이 있음을 확인하였으며, 추후 지속적인 연구를 통해 항암제 후보물질로 기대된다.

Biphasic augmentation of alpha-adrenergic contraction by plumbagin in rat systemic arteries

  • Kim, Hae Jin;Yoo, Hae Young;Zhang, Yin Hua;Kim, Woo Kyung;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.687-694
    • /
    • 2017
  • Plumbagin, a hydroxy 1,4-naphthoquinone compound from plant metabolites, exhibits anticancer, antibacterial, and antifungal activities via modulating various signaling molecules. However, its effects on vascular functions are rarely studied except in pulmonary and coronary arteries where NADPH oxidase (NOX) inhibition was suggested as a mechanism. Here we investigate the effects of plumbagin on the contractility of skeletal artery (deep femoral artery, DFA), mesenteric artery (MA) and renal artery (RA) in rats. Although plumbagin alone had no effect on the isometric tone of DFA, $1{\mu}M$ phenylephrine (PhE)-induced partial contraction was largely augmented by plumbagin (${\Delta}T_{Plum}$, 125% of 80 mM KCl-induced contraction at $1{\mu}M$). With relatively higher concentrations (>$5{\mu}M$), plumbagin induced a transient contraction followed by tonic relaxation of DFA. Similar biphasic augmentation of the PhE-induced contraction was observed in MA and RA. VAS2870 and GKT137831, specific NOX4 inhibitors, neither mimicked nor inhibited ${\Delta}T_{Plum}$ in DFA. Also, pretreatment with tiron or catalase did not affect ${\Delta}T_{Plum}$ of DFA. Under the inhibition of PhE-contraction with L-type $Ca^{2+}$ channel blocker (nifedipine, $1{\mu}M$), plumbagin still induced tonic contraction, suggesting $Ca^{2+}$-sensitization mechanism of smooth muscle. Although ${\Delta}T_{Plum}$ was consistently observed under pretreatment with Rho A-kinase inhibitor (Y27632, $1{\mu}M$), a PKC inhibitor (GF 109203X, $10{\mu}M$) largely suppressed ${\Delta}T_{Plum}$. Taken together, it is suggested that plumbagin facilitates the PKC activation in the presence of vasoactive agonists in skeletal arteries. The biphasic contractile effects on the systemic arteries should be considered in the pharmacological studies of plumbagin and 1,4-naphthoquinones.

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Cloning and mutational analysis of pyrroquinoline quinone(PQQ) genes from a phosphate - solubilizing biocontrol bacterium Enterobacter intermedium.

  • Han, Song-Hee;Cho, Baik-Ho;Kim, Young-Cheol
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.94.2-95
    • /
    • 2003
  • E. intermedium 60-2G possessing a strong ability to solubilize insoluble phosphate, has plant growth-promoting activity, induced systemic resistance activity against scab pathogen in cucumber, and antifungal activity against various phytopathogenic fungi. The phosphate solubilizing activity of 60-2G may be mainly accomplished by production of gluconic acid through a direct extracellular oxidation of glucose by glucose dehydrogenase that required a PQQ cofactor for its activation. A pqq gene cluster conferred Phosphate-solubilizing activity in E. coli DH5${\alpha}$ was cloned and sequenced. The 6,783 bP pqq sequence had six open reading frames (from A to F) and showed 50-95% homology to pqq genes from other bacteria. The E. coli strain expressing the pqq genes solubilized phosphate from hydroxyapatite after a pH drop to 4.0, which paralleled in time the secretion of gluconic acid. To study the role of PQQ in biocontrol traits of E. intermedium, PQQ mutants of 60-2G were constructed by marker exchangee mutagenesis. The PQQ mutants of E. intermedium were lost activities of solubilizing phosphate, growth inhibition of phytopathogenic fungi, and plant growth promotion. These findings suggest that PQQ plays an important role, possibly activation of certain enzymes, in several beneficial bacterial traits of E. intermedium by as yet an unknown mechanism.

  • PDF

이트라코나졸 마이크로스폰지의 약물 전달 시스템: 제조, 특성 및 방출 연구 (The Microsponge Delivery System of Itraconazole: Preparation, Characterization and Release Studies)

  • 조영호;이종화;김학형;이계원
    • KSBB Journal
    • /
    • 제26권3호
    • /
    • pp.217-222
    • /
    • 2011
  • Itraconazole is a triazole antifungal agent to inhibit most fungal pathogens. To improve the oral absorption and dissolution of poorly water-soluble itraconazole, microsponge system composed of $Eudragit^{(R)}$ E100 and polyvinyl alcohol(PVA) formulated by quasi-emulsion solvent diffusion method, and its physicochemical properties and pharmacokinetic parameters of itraconazole were studied. The microsponge of itraconazole were discrete free flowing micro sized particles with perforated orange peel like morphology as visualized by scanning electron microscope (SEM). Results showed that the drug loading efficiency, production yield, and particle size of itraconazole microsponge were affected by drug to polymer ratio, the volume of internal phase containing methylene chloride, stirring rate and the concentration of PVA used. Also, the results showed that the dissolution rate of itraconazole from the microsponges was affected by drug to polymer ratio. In other words, the release rate of itraconazole from microsponges was increased from at least 27.43% to 64.72% after 2 h. The kinetics of dissolution mechanism showed that the dissolution data followed Korsmeyer-Peppas model. Therefore, these results suggest that microsponge system can be useful for the oral delivery of itraconazole by manipulating the release profile.