• 제목/요약/키워드: Antibiotic feed additives

검색결과 28건 처리시간 0.031초

Effect of Different Feed Additives on Growth Performance and Blood Profiles of Korean Hanwoo Calves

  • Sarker, M.S.K.;Ko, S.Y.;Lee, S.M.;Kim, G.M.;Choi, J.K.;Yang, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권1호
    • /
    • pp.52-60
    • /
    • 2010
  • This experiment was conducted on 60 Hanwoo calves comprising five feed additive groups, with 12 calves in each group, to determine the effects of additives at pre- and post-weaning on growth performance and blood profile. The groups were control, antibiotic (Neomycin 110 ppm), illite (2%), fermented green tea probiotics (FGTP, 0.5%), and mixed additives (FGTP 0.25%, illite 1% and licorice 0.1%). The calves were offered experimental pellet feeds ad libitum and after one month were supplied with imported timothy hay. They moved freely within the group and suckled their mother' milk during the pre-weaning stage (birth to 3 months) and were separated from their dam during the post-weaning stage (4-5 months). During the pre-weaning stage, the highest average daily gain (ADG) was recorded in the antibiotic- and mixed additive-fed groups followed by FGTP, control and illite groups. In the post-weaning stage, significantly higher total weight gain and ADG were recorded in both the FGTP and mixed additive groups compared to the other groups (p<0.05). Feed efficiency of mixed additive- and illite-fed calves were almost similar with antibiotic-fed calves compared to the other two groups, but the ADG was lowest in illite-fed calves during the pre-weaning stage. In contrast, post-weaning calves fed FGTP and mixed additives showed better feed efficiency. The values of hematological indices, differential leukocyte count, blood proteins and immunoglobulin among the additive-fed calves were not significantly different (p>0.05), although hemoglobin and hematocrit values were lower in FGTP compared to control, but similar in mixed additive and antibiotic groups. These results indicate no detrimental effects of feed additives on the blood profile of calves at both pre- and post-weaning age. Serum albumin in post-weaning calves of all feed additive groups were similar but significantly lower (p<0.05) than in the control group. Post-weaning, IgM was significantly lower (p<0.05) in illite-fed calves compared to other treatment groups, but there was no difference at pre-weaning. Considering all factors, the mixed feed additives and FGTP can be the replacement feed formula for antibiotic for Hanwoo beef calf production, especially when used post- weaning.

Advances and Future Directions in Poultry Nutrition: An Overview

  • Ravindran, Velmurugu
    • 한국가금학회지
    • /
    • 제39권1호
    • /
    • pp.53-62
    • /
    • 2012
  • In the past, poultry nutrition has focussed on increasing the production efficiency to meet the progress achieved in the genetic potential of broilers and layers. Future directions in poultry nutrition will be driven by not only by the need to maximise biological and economic performance of birds, but also by societal issues (environment, antibiotic growth promoters, welfare, traceability and use of genetically modified ingredients). Key advances in poultry nutrition are discussed and future directions, which can be expected, are highlighted. Given the tightening supply and ever-increasing cost of raw materials, there will be more pressure to extract every unit of energy and nutrients from feed ingredients. In this context, a number of feed additives are expected to play an increasingly significant role. Feed enzymes and crystalline amino acids, in particular, will have a profound effect on future sustainability of the poultry industry. Future nutritional research need to focus on identifying the barriers to effective digestion and utilisation of nutrients and, to achieve this objective, nutritionists must combine their expertise with those of specialising in other biological sciences, including immunology, microbiology, histology and molecular biology.

Current status and prospects for in-feed antibiotics in the different stages of pork production - A review

  • Li, Junyou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권12호
    • /
    • pp.1667-1673
    • /
    • 2017
  • Antibiotics have long been of great benefit for people, both in the medical treatment of human disease and in animal food where they improve the growth performance and feed utilization during animal production. Antibiotics as in-feed supplements affect all stages of pork production, including the gestation, nursing, growing, and finishing stages, although the effects show stage-dependent differences. However, the use of antibiotics in animal feed has become a worldwide concern. This review describes why sub-therapeutic levels of antibiotic additives in animal feed have become an integral part of animal feeding programs for more than 70 years, particularly in pork production. It also discusses the threat of the long-term use of sub-therapeutic levels of antibiotics in pork production. In recent years, the effectiveness of in-feed antibiotics has tended to decrease. This review analyzes this change from various perspectives. First, the equipment used at pig farms has improved dramatically and is more sanitary. Worldwide, more pig farms use pig farrowing crates, gestation crates, piglet nursery crates, flooring devices, piggery ventilation and cooler systems, automatic pig feeders, piggery heating equipment, and artificial insemination systems. In addition, scientists have replaced the use of antibiotics with organic acids, fermented mash, probiotics, prebiotics, minerals, oligosaccharides, enzymes, herbs/flavors, and protein/amino acids, and have improved management and husbandry techniques. In addition, animal welfare legislation has been aimed at improving the quality of the floors and living space, ensuring that animals have permanent access to fresh water, and setting a minimum weaning age. Finally, the prospects and the possibility of replacing antibiotics in pork production are described, in line with recent research results.

Role and functions of micro and macro-minerals in swine nutrition: a short review

  • Vetriselvi Sampath;Shanmugam Sureshkumar;Woo Jeong Seok;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권3호
    • /
    • pp.479-489
    • /
    • 2023
  • Livestock production depends on the utilization of nutrients, and when this is accomplished, there is accelerated momentum toward growth with a low cost-to-feed ratio. Public concern over the consumption of pork with antibiotic residues in animals fed antibiotic growth promoters (AGP) has paved the way for using other natural additives to antibiotics, such as herbs and their products, probiotics, prebiotics, etc. Numerous feed additives are trending to achieve this goal, and a classic example is vitamins and minerals. Vitamins and minerals represent a relatively small percentage of the diet, but they are critical to animal health, well-being, and performance; both play a well-defined role in metabolism, and their requirements can vary depending on the physiological stage of the animals. At the same time, the absence of these vitamins and minerals in animal feed can impair the growth and development of muscles and bones. Most commercial feeds contain vitamins and trace minerals that meet nutrient requirements recommended by National Research Council and animal feeding standards. However, the potential variability and bioavailability of vitamins and trace elements in animal feeds remain controversial because daily feed intake varies, and vitamins are degraded by transportation, storage, and processing. Accordingly, the requirement for vitamins and minerals may need to be adjusted to reflect increased production levels, yet the information presented on this topic is still limited. Therefore, this review focuses on the role and function of different sources of minerals, the mode of action, the general need for micro and macro minerals in non-ruminant diets, and how they improve animal performance.

Optimizing Production of Two Potential Probiotic Lactobacilli Strains Isolated from Piglet Feces as Feed Additives for Weaned Piglets

  • Chiang, Ming-Lun;Chen, Hsi-Chia;Chen, Kun-Nan;Lin, Yu-Chun;Lin, Ya-Ting;Chen, Ming-Ju
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1163-1170
    • /
    • 2015
  • Two probiotic strains, Lactobacillus johnsonii x-1d-2 and Lactobacillus mucosae x-4w-1, originally isolated from piglet feces, have been demonstrated to possess antimicrobial activities, antibiotic resistances and interleukin-6 induction ability in RAW 267.4 macrophages in our previous study. These characteristics make L. johnsonii x-1d-2 and L. mucosae x-4w-1 good candidates for application in feed probiotics. In this study, soybeal meal, molasses and sodium acetate were selected to optimize the growth medium for cultivation of L. johnsonii x-1d-2 and L. mucosae x-4w-1. These two strains were then freeze-dried and mixed into the basal diet to feed the weaned piglets. The effects of L. johnsonii x-1d-2 and L. mucosae x-4w-1 on the growth performance and fecal microflora of weaned piglets were investigated. The results showed that the bacterial numbers of L. johnsonii x-1d-2 and L. mucosae x-4w-1 reached a maximum of 8.90 and 9.30 log CFU/mL, respectively, when growing in optimal medium consisting of 5.5% (wt/vol) soybean meal, 1.0% (wt/vol) molasses and 1.0% (wt/vol) sodium acetate. The medium cost was 96% lower than the commercial de Man, Rogosa and Sharpe medium. In a further feeding study, the weaned piglets fed basal diet supplemented with freeze-dried probiotic cultures exhibited higher (p<0.05) body weight gain, feed intake, and gain/feed ratio than weaned piglets fed basal diet. Probiotic feeding also increased the numbers of lactobacilli and decreased the numbers of E. coli in the feces of weaned piglets. This study demonstrates that L. johnsonii x-1d-2 and L. mucosae x-4w-1 have high potential to be used as feed additives in the pig industry.

The effect of multi-strain probiotics as feed additives on performance, immunity, expression of nutrient transporter genes and gut morphometry in broiler chickens

  • Biswas, Avishek;Dev, Kapil;Tyagi, Pramod K;Mandal, Asitbaran
    • Animal Bioscience
    • /
    • 제35권1호
    • /
    • pp.64-74
    • /
    • 2022
  • Objective: This study was conducted to investigate the effects of dietary multi-strain probiotic (MSP) (Bacillus coagulans Unique IS2 + Bacillus subtillis UBBS14 + Saccharomyces boulardii Unique 28) on performance, gut morphology and expression of nutrient transporter related genes in broiler chickens. Methods: A total of 256 (4×8×8) day-old CARIBRO Vishal commercial broiler chicks of uniform body weight were randomly distributed into four treatments with 8 replicates each and having eight chicks in each replicate. Four dietary treatments were T1 (negative control-basal diet), T2 (positive control-antibiotic bacitracin methylene disalicylate at 20 mg/kg diet), T3 (MSP at 107 colony-forming unit [CFU]/g feed), and T4 (MSP at 108 CFU/g feed). Results: During 3 to 6 weeks and 0 to 6 weeks, the body weight gain increased significantly (p<0.05) in T3 and T4 groups. The feed intake significantly (p<0.05) reduced from T1 to T3 during 0 to 3 weeks and the feed conversion ratio also significantly (p<0.05) improved in T3 and T4 during 0 to 6 weeks. The humoral and cell mediated immune response and the weight of immune organs were also significantly (p<0.05) improved in T3 and T4. However, significant (p<0.05) dietary effects were observed on intestinal histo-morphometry of ileum in T3 followed by T4 and T2. At 14 d post hatch, the relative gene expression of glucose transporter (GLUT5), sodium-dependent glucose transporter (SGLT1) and peptide transporter (PepT1) showed a significant (p<0.05) up-regulating pattern in T2, T3, and T4. Whereas, at 21 d post hatch, the gene expression of SGLT1 and PepT1 was significantly (p<0.05) downregulated in MSP supplemented treatments T3 and T4. Conclusion: The supplementation of MSP at 107 CFU/g diet showed significant effects with improved performance, immune response, gut morphology and expression of nutrient transporter genes. Thus, the MSP could be a suitable alternative to antibiotic growth promoters in chicken diets.

사상자 추출물의 자돈 병원성 대장균 억제 효과 (The effects of Torilis fructus extracts against enteropathogenic Escherichia coli in Piglets)

  • 홍선화;김옥진
    • 한국동물위생학회지
    • /
    • 제36권4호
    • /
    • pp.283-289
    • /
    • 2013
  • The antibiotic chemotherapy produces sometimes side effects and fails to eliminate bacterial infection. The occurrence of strains resistant to antibiotics would be expected to increase, and it is nowadays important to search for non-antibiotic substances. We are aimed to evaluate the effects of Torilis fructus extracts against enteropathogenic Escherichia coli (E. coli) in Piglets. The piglets were divided with three groups; Negative control group, E. coli-infected positive control group, and the Torilis fructus extracts treated group with E. coli infection. During the study period, we compared clinical signs, weight increase rate, fecal scores, gross findings between the treated group and non treated group. After necropsy, necropsy findings and histopathological findings were conducted with the comparison between the groups. As the results of this study, the Torilis fructus extracts additive showed the effects on the suppression of E. coli-induced lesions. On the basis of this study results, our data suggest that the Torilis fructus extracts additive have the antimicrobial effects. The Torilis fructus extracts additive could be used as the alternative material for antimicrobial feed additives.

Dietary encapsulated Bifidobacterium animalis and Agave fructans improve growth performance, health parameters, and immune response in broiler chickens

  • Hernandez-Granados, Maria Jose;Ortiz-Basurto, Rosa Isela;Jimenez-Fernandez, Maribel;Garcia-Munguia, Carlos Alberto;Franco-Robles, Elena
    • Animal Bioscience
    • /
    • 제35권4호
    • /
    • pp.587-595
    • /
    • 2022
  • Objective: The present study was conducted to evaluate the effects of dietary supplementation with Bifidobacterium animalis, Agave fructans, and symbiotic of both encapsulated on growth performance, feed efficiency, blood parameters, and immune status in broiler chickens, and to compare these with diets including antibiotic growth promoters and without additives. Methods: A comparative experimental study was carried out with 135 male Ross 308 broiler chickens. Each trial was divided into 5 equal groups. Control group (CON) received a standard diet without growth promoter; GPA, a standard diet with colistin sulfate and zinc bacitracin (0.25 g/kg of feed); PRE, a standard diet with 1% Agave fructans; PRO, a standard diet with Bifidobacterium animalis (11.14±0.70 log CFU/g); SYM, a standard diet with B. animalis and Agave fructans. Results: A significant decrease in food consumption was found for the GPA, PRE, and SYM, compared to the CON group. The results show a better feed conversion index in PRE and GPA with respect to the CON group with the highest conversion index. Interestingly, the weight of the gastrointestinal tract shows a statistically significant difference between GPA and PRE groups. Moreover, the length of the gastrointestinal tract of the GPA group was less than the PRE group. In the total leukocyte count, there was a statistically significant increase in the GPA group compared to the CON, PRE, and PRO groups, and the heterophiles-lymphocytes index was lower in PRO. Regarding the cytokines, interleukin 10 (IL-10) decreased in PRO compared to CON and PRE, while IL-1β increased in the SYM group. Conclusion: Alternative treatments were shown to achieve similar productive results as growth-promoting antibiotics and showed improvement over diet without additives; however, they have immunomodulatory properties and improved the development of the gastrointestinal tract compared to the treatment of growth-promoting antibiotics.

Beneficial roles of Song-Gang stone as a feed additive in aquaculture: a review

  • Yoo, Gwangyeol;Abediostad, Zeinab;Choi, Wonsuk;Bae, Jinho;Choi, Youn Hee;Lee, Seunghyung;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • 제24권12호
    • /
    • pp.394-399
    • /
    • 2021
  • Song-Gang® bio-stone (SGS) is a microporous crystalline hydrated aluminosilicate which has found various applications because of their very unique physiochemical characteristics such as ion exchange and absorptive-desorptive properties. Significant progress has been made in recent years on applications of these inorganic adsorbents in different industries including agriculture, aquaculture, water and wastewater treatment. This review article intends to summarize the published reports on the applications of SGS in aquaculture industry. SGS application as a feed additive to enhance fish growth and promote their health and nutritional parameters is the most important discussed areas. According to the technical data that are discussed in this review, SGS should be considered as a material with tremendous potential for application in the aquaculture industry. Considerable amounts of research works are under way to explore other opportunities for application of SGS to benefit aquaculture industry.

양돈용 생균제 균주개발을 위한 유산균주 선발 (In vitro selection of lactic acid bacteria for probiotic use in pig)

  • 유지숙;한선경;신명수;이완규
    • 한국동물위생학회지
    • /
    • 제32권1호
    • /
    • pp.33-41
    • /
    • 2009
  • In order to develop probiotic strain for pigs, Lactobacillus spp. (527 isolates), Streptococcus spp. (95 isolates) and Bifidobacterium spp. (25 isolates) were isolated from the feces of 35 pigs. These isolates were tested through in vitro experiment such as acid tolerance at pH 2.0 (Lactobacillus spp. and Streptococcus spp.) or pH 3.0 (Bifidobacterium spp.), bile tolerance in MRS broth containing 0.3% (w/v) Oxgall, heat resistance at $70^{\circ}C$ and $80^{\circ}C$ for 5 min, antibiotic resistance, antimicrobial activity against pathogenic bacteria and Caco-2 cell adherence assay. Finally ten most superior strain (5 Lactobacillus spp. strain, 3 Bifidobacterium spp. strain and 2 Streptococcus spp. strain) were selected as potential candidate for probiotic use in pig industry. It could be used as an alternative to antibiotics in feed additives.