• Title/Summary/Keyword: Antibacterial agents

Search Result 376, Processing Time 0.025 seconds

Inhibition of Food-derived Lactic Acid Bacterial Biofilm Formation Using Eisenia bicyclis-derived Nanoparticles (식품 유래 Biofilm 형성 유산균에 대한 대황(Eisenia bicyclis) 유래 Nanoparticle의 Biofilm 형성 저해)

  • Do Kyung Oh;Fazlurrahman Khan;Seul-Ki Park;Du-Min Jo;Kyung-Jin Cho;Geum-Jae Jeong;Yeon-Ju Sim;Jeong Mi Choi;Jae-Ho Woon;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.129-136
    • /
    • 2024
  • Lactic acid bacteria (LAB) growth in processed meat products produces slime. In this study, 10 different biofilm-forming LAB, including Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Levilactobacillus brevis, Lactiplantibacillus plantarum, Leuconostoc citreum, Weissella viridescens, and Latilactobacillus sakei, were isolated from various meat products and identified based on 16S rRNA gene analysis. To inhibit biofilm formation by LABs, Eisenia bicycles methanolic extract (EB) and ethyl acetate soluble fraction (EA) were used as antibacterial and antibiofilm agents, respectively. Furthermore, EA and EB were employed to synthesize gold nanoparticles (AuNPs) such as EB-AuNPs and EA-AuNPs, which could serve as antibiofilm agents against the isolated LAB. These findings demonstrate that EA, EB-AuNPs, and EA-AuNPs exhibit significant antibacterial activity against the isolated LAB. Furthermore, EB-AuNPs reduced L. citreum biofilm production, whereas EA-AuNPs inhibited L. mesenteroides and L. brevis biofilm formation. The current results suggest that EB-AuNPs and EA-AuNPs can be used as nanomaterials to inhibit LAB that form biofilms on meat products.

A Review of Marine Algae-derived Therapeutic Agents for Respiratory Disease Asthma (해조류 유래 호흡기 질환 천식 치료제 연구 동향)

  • Kim, Tae-Hee;Heo, Seong-Yeong;Oh, Gun-Woo;Kim, Min-Sung;Choi, Il-Whan;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Asthma is a complex inflammatory disease of the lung characterized by variable airflow obstruction, airway hyperresponsiveness, airway inflammation, and reduction of respiratory function. Its prevalence and incidence are increasing because of the effect of various environmental and lifestyle risk factors. Steroid inhalation, long-acting agonists, and other synthetic drugs are used for the treatment of this disease. However, they have some side effects and show unsatisfied result and response after treatment. Therefore, many researchers have focused on the development of natural product-related treatment for asthma to suppress the side effects and unsatisfied results. Seaweeds contain various bioactive compounds with anti-inflammatory, antibacterial, and anti-oxidant activities. Thus, we investigated the asthma treatment-related literature using marine algae via the Google scholar search engine. Consequently, the literature is rarely investigated, but is increasing steadily. The literature was performed as a comparison study with an ovalbumin-induced group or drug-treated group, and investigated the antiasthma activity of algae ethanol extract. Although many researchers have studied marine algae-derived therapeutic agents for asthma, the amount of literature is rare compared with those of herbal medicine-derived therapeutic agents. Conclusively, we suggest that many researchers should investigate and develop algae-derived therapeutic agents for asthma treatment.

Physical and Antibacterial Evaluation of Copper/Bioglass Nanoparticles (Cu/Bioglass Nano Particles; Cu-BGn) in Mineral Trioxide Aggregate(MTA) (구리/생체활성유리나노입자(Cu/Bioglass nano particles;Cu-BGn)를 첨가한 Mineral Trioxide Aggregate (MTA)의 물성 및 항균 평가)

  • Kim, Dong-Ae;Jun, Soo-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • For this study copper ions-containing bioactive glass nanoparticles commonly used in mineral trioxide aggregate (MTA) was developed to improve the mechanical properties and promote antibacterial effect of MTA with the original material. The mechanical properties and antibacterial activity of Cu-BGn incorporating varying amounts cooper incorporated bioactive glass nano particles(BGn) 0.5,1.0,2.0 and 4.0 wt% in MTA were characterized composition of the resulting were investigated. The compressive strength was calculated by weighing specimens with a diameter of 4 mm and a thickness of 6 mm according to ISO 6876 (2012). The antimicrobial effect was evaluated using two strains of S. mutans and E. faecalis. The mechanical properties of the test results was Cu-BGn increased no statistically significant difference was observed (p>0.05). Adhesion experiment results S. mutans in contrast to the control group Ortho MTA, 4.0 wt% of Cu-BGn added experimental group showed a significant difference was observed (p<0.05). Also, E. faecalis statistical analysis indicated a significant difference for antibacterial agents between control and Cu-BGn containing(p<0.05). It seems that this Cu-BGn proved that even a antibacterial effect was demonstrated. Therefore, it was suggest that it is necessary for in-depth research into various environments that can reproduce the oral environment.

Antibacterial and Antioxidant Activity of Spermidine, a Natural Polyamine, on Fish Pathogenic Bacteria and C2C12 Myoblast Cells (어류병원성 세균 및 C2C12 근원세포에 대한 polyamine 계열 물질인 spermidine의 항균 및 항산화 활성)

  • Hwang-Bo, Hyun;Choi, Eun-Ok;Kim, Min Young;Ji, Seon Yeong;Hong, Su Hyun;Park, Cheol;Cha, Hee-Jae;Kim, Suhkmann;Kim, Heui-Soo;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.42-51
    • /
    • 2019
  • We compared the antibacterial activities of spermidine and astaxanthin against two gram-positive bacteria such as Streptococcus parauberis and S. iniae to find new antibacterial candidates. We also evaluated the preventive effects of spermidine against oxidative stress-induced cytotoxicity in C2C12 myoblasts. Our results indicated that spermidine has more significant antibacterial activities than astaxanthin against both two fish pathogenic bacteria as well as gram-negative bacteria Escherichia coli used as a control group. Minimum inhibitory concentration and minimum bactericidal concentration of spermidine were 0.25 mM and 1 mM against S. parauberis, 1 mM and 3 mM against S. iniae, and 0.5 mM and 1.5 mM against E. coli, respectively. In addition, the postantibiotic effect lasted from 7 h, 5 h and 6 h for S. parauberis, S. iniae and E. coli, respectively. The results also showed that the decreased C2C12 cell viability by H2O2 could be attributed to the induction of DNA damage and apoptosis accompanied by the increased production of reactive oxygen species, which was remarkably protected by spermidine. Additionally, the antioxidant effect of spermidine was associated with the activation of Nrf2 signaling pathway. According to the data, spermidine may be a potential lead compound which can be further optimized to discover novel antibacterial and antioxidant agents.

Antibacterial Effect of Haedokgeumhwa-san against Methicillin-Resistant Staphylococcus aureus (해독금화산(解毒金花散)의 Methicillin-Resistant Staphylococcus aureus에 대한 항균효과)

  • Lee, Ha-Il;Lee, Su-Kyung;Kwon, Young-Mi;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • Objectives Methicillin-Resistant Staphylococcus aureus (MRSA) is a human pathogen and a major cause of hospital-acquired infections. New antibacterial agents that have not been compromised by bacterial resistance are needed to treat MRSA-related infections. In this study, we investigated the antimicrobial activity ofethanol extract of Haedokgeumhwa-san (HGH) which prescription is composed of korean medicine against MRSA. Methods The antibacterial activity of HGH extract was evaluated against MRSA strains by using the Disc diffusion method, broth microdilution method (minimal inhibitory concentration; MIC), checkerboard dilution test, and time-kill test; its mechanism of action was investigated by bacteriolysis, detergent or ATPase inhibitors. The checkerboard dilution test was used to examined synergistic effect of ampicillin, oxacillin, ciprofloxacin, vancomycin, gentamicin and norfloxacin in combination with HGH ethanol extract. A time-kill assay was performed a survival curve which was obtained by plotting viable colony counts depending on time on bacterial growth. Results The minimum inhibitory concentration (MIC) of ethanol extract (HGH) ranged from 1,000 to $2,000{\mu}g/mL$ against all the tested bacterial strains, respectively. We are able to confirm that HGH extract has potentially strong antibacterial activity. In the checkerboard dilution test, fractional inhibitory concentration index of HGH in combination with antibiotics indicated synergy or partial synergism against S. aureus. A time-kill study showed that the growth of the tested bacteria was considerably inhibited after 8 hr of treatment with the combination of HGH with selected antibiotics. For measurement of cell membrane permeability, HGH $250{\sim}1,000{\mu}g/mL$ along with concentration of Triton X-100 (TX) and Tris-(hydroxymethyl) aminomethane (Tris) were used. In the other hand, N,N-dicyclohexylcarbodimide (DCCD) and Sodium azide ($NaN_3$) was used as an inhibitor of ATPase. TX, Tris, DCCD and $NaN_3$ cooperation against S. aureus showed synergistic action. Accordingly, antimicrobial activity of HGH was affected by cell membrane and inhibitor of ATPase. Conclusions These results suggest that Haedokgeumhwa-san extract has antibacterial activity, and that HGH extract offers a potential as a natural antibiotic against MRSA.

Effect of antibacterial substances produced by probiotic lactic acid bacteria on histamine formation in rennet curd (렌넷 커드 내 히스타민 생성에 관한 프로바이오틱 유산균이 생산한 항균 물질의 영향)

  • Lim, Eun-Seo;Choi, Jae-Suk
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Purpose of the present study was to investigate the factors affecting the production of antibacterial substances and histamine in rennet curd prepared by inoculation of histamine-producing lactic acid bacteria (LAB) and probiotic LAB. Probiotic Lactobacillus sakei PIL52 and Lactobacillus plantarum FIL20 produced strong antimicrobial agents against histamine-producing bacteria Lactobacillus brevis LAS129, Enterococcus faecium SBP12, and Enterococcus faecalis SBP58. The lactic acid and crude bacteriocin produced from the probiotic LAB inhibited histamine-producing bacteria in a concentration-dependent manner. As the number of probiotic LAB inoculated for the production of rennet curd increased, the antibacterial activity against histamine-producing bacteria was elevated due to the increased amount of lactic acid and crude bacteriocin in the sample. The growth of probiotic LAB as well as histamine-producing bacteria was inhibited by addition of 10% NaCl, thus the antibacterial substances and histamine contents in rennet curd were significantly lower than those of the control (P < 0.05). Meanwhile, the histamine content was not significantly increased when the rennet curd prepared by mixing probiotic LAB and histamine-producing bacteria was stored at $25^{\circ}C$ for 5 days. However, the amount of histamine detected in the rennet curd was significantly (P < 0.05) increased because the antibacterial activity of the bacteriocin produced by the probiotic LAB was decreased at $20^{\circ}C$ for 20 days.

Antioxidant and Antibacterial Activity of Commercially Available Herbs in Korean Markets (국내 시판되는 허브류의 항산화 및 항균효과 검색)

  • Chae, In-Gyeong;Kim, Hyun-Jeong;Yu, Mi-Hee;Kim, Hyuk-Il;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1411-1417
    • /
    • 2010
  • In this study, we investigated the antioxidant and antibacterial activity of methanol extracts from 6 plants which were Chrysanthemum zawadskii Herb. var. latilobum (Maxim.) Kitamura (Gu-jeol-cho), Lavandula spica L. (Lavender), Rosmainus offcinals L. (Rosemary), Cymbopogon citrates (Lemongrass), Saussureae radix (Mok-hyang), Calendular officinalis L. (Calendular). Antioxidative effects of herbal extracts were measured by polyphenols, flavonoids contents and DPPH radical scavenging activity assay. We also evaluated the antibacterial activity against Staphylococcus aureus and Escherichia coli O157:H7. Methanol extracts from Gu-jeol-cho, lavender, rosemary and lemongrass showed high polyphenols contents as well as strong DPPH scavenging activity. In particular, rosemary extract contained highest polyphenol levels as $126.69{\pm}2.62{\mu}g/mg$ compared to other herbs. As for DPPH radical scavenging activities, $IC_{50}$ values of rosemary extracts were $6.23{\pm}0.58{\mu}g/mL$. The rosemary extracts also showed higher antibacterial effects against S. aureus and E. coli O157:H7. These results indicate that rosemary could be used as natural antioxidant and antibacterial agents.

Antibacterial and Antiviral Activities of Microwave-assisted Thuja orientalis Extracts (마이크로웨이브를 이용한 측백나무 추출물의 항균 및 항바이러스 특성)

  • Sangwon Ko;Jae-Young Lee;Seong-Hyeon Kim;Young-Chul Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.192-198
    • /
    • 2023
  • In this study, the components of microwave-assisted extracts obtained from Thuja orientalis leaves were analyzed, and the cytotoxicity, antibacterial and antiviral activities were evaluated. The predominant components from microwave-assisted extraction were catechin, leucopelargonidin, arecatannin, quinolone, and kaempferol derivatives, which are classified in the flavonoid and tannin groups. We observed that the 0.11 mg/mL of extract concentration did not show cytotoxicity in HaCaT cells. The antibacterial activities were tested according to the guidelines of methods for determining the bactericidal activity of antimicrobial agents. The extracts showed 99.9% antibacterial efficiency against gram-positive S. aureus, while the antibacterial effect on gram-negative E. coli was insignificant. When the extract concentration and contact time with bacteria were increased, 99.9% antibacterial efficiency was observed for E. coli as well as S. aureus. Following the standard to assess the activity of microbicides against viruses in suspension (ASTM-E1052-20), the antiviral efficiency was more than 99.99% for influenza A (H1N1) and SARS-CoV-2. These results suggest its potential use in antiviral disinfectants, surface coatings, personal protective equipment, and textiles.

Flexible Docking of an Acetoxyethoxymethyl Derivative of Thiosemicarbazone into Three Different Species of Dihydrofolate Reductase

  • Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.807-816
    • /
    • 2002
  • Dihydrofolate reductases (DHFR) of human, Candida albicans and E. coli were docked with their original ligands of X-ray crystal complex using QXP (Quick eXPlore), a docking program. Conditions to reproduce the crystal structures within the root mean square deviation (rmsd) of 2.00 $\AA$ were established. Applying these conditions, binding modes and species-specificities of a novel antibacterial compound, $N^4-(2-acetoxyethoxymethyl)-2-acetylpyridine$ thiosemicarbazone (MTSC), were studied. As the results, the docking program reproduced the crystal structures with average rmsd of six ligands as 0.91 $\AA$ ranging from 0.49 to 1.45 $\AA$. The interactions including the numbers of hydrogen bonds and hydrophobic interactions were the same as the crystal structures and superposition of the crystal and docked structures almost coincided with each other. For AATSC, the results demonstrated that it could bind to either the substrate or coenzyme sites of DHFR in all three species with different degrees of affinity. It confirms the experimentally determined kinetic behavior of uncompetitive inhibition against either the inhibitor or the coenzyme. The docked MTSC overlapped well with the original ligands and major interactions were consistent with the ones in the crystal complexes. The information generated from this work should be useful for future development of antibacterial and antifungal agents.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.